Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 119 - 119
14 Nov 2024
Rösch G Rapp AE Tsai PL Kohler H Taheri S Schilling AF Zaucke F Slattery D Lanzl ZJ
Full Access

Introduction

Osteoarthritis (OA) is a chronic degenerative disease of the entire joint leading to joint stiffness and pain (PMID:33571663). Recent evidence suggests that the sympathetic nervous system (SNS) plays a role in the pathogenesis of OA (PMID:34864169). A typical cause for long-term hyperactivity of the SNS is chronic stress. To study the contribution of increased sympathetic activity, we analyzed the progression of OA in chronically stressed mice.

Method

We induced OA in male C57BL/6J mice by destabilizing the medial meniscus (DMM)(PMID:17470400) and exposed half of these mice to chronic unpredictable mild stress (CUMS)(PMID:28808696). Control groups consisted of sham-operated mice with and without CUMS exposure. After 12 weeks, CUMS efficacy was determined by assessing changes in body weight gain and activity of mice, measuring splenic norepinephrine and serum corticosterone levels. OA progression was studied by histological analysis of cartilage degeneration and synovitis, and by μCT to evaluate changes in calcified cartilage and subchondral bone microarchitecture. A dynamic weight-bearing system was used to assess OA-related pain.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 139 - 139
2 Jan 2024
Rösch G Rapp AE Tsai P Kohler H Taheri S Schilling AF Zaucke F Slattery D Jenei-Lanzl Z
Full Access

Osteoarthritis (OA) affects the whole joint and leads to chronic pain. The sympathetic nervous system (SNS) seems to be involved in OA pathogenesis, as indicated by in vitro studies as well as by our latest work demonstrating that sympathectomy in mice results in increased subchondral bone volume in the OA knee joint. We assume that chronic stress may lead to opposite effects, such as an increased bone loss in OA due to an elevated sympathetic tone. Therefore, we analyzed experimental OA progression in mice exposed to chronic stress. OA was induced in male C57BL/6J mice by surgical destabilization of the medial meniscus (DMM) and Sham as well as non-operated mice served as controls. Half of these groups were exposed to chronic unpredictable mild stress (CUMS). After 12 weeks, chronic stress efficiency was assessed using behavioral tests. In addition to measuring body weight and length, changes in subchondral bone were analyzed by μCT. Dynamic Weight Bearing system was used to monitor OA-related pain. Histological scoring will be conducted to investigate the severity cartilage degeneration and synovial inflammation. CUMS resulted in increased anxiety and significant decrease in body weight gain in all CUMS groups compared to non-CUMS groups. CUMS also increased serum corticosterone in healthy mice, with even higher levels in CUMS mice after DMM surgery. CUMS had no significant effect on subchondral bone, but subarticular bone mineral density and trabecular thickness were increased. Moreover, CUMS resulted in significant potentiation of DMM-associated pain. Our results suggest that the autonomic imbalance with increased sympathetic nervous activity induced by chronic stress exacerbates the severity of OA pain perception. We expect significantly increased cartilage degeneration as well as more severe synovial inflammation in CUMS DMM mice compared to DMM mice.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 68 - 68
1 Nov 2018
Tsai T Lian W Wang F Ko J
Full Access

Subacromial bursa fibrosis are linked to rotator cuff lesion with shoulder stiffness; however, the mechanism underlying this shoulder disorder remain elusive. MicroRNA-29s (miR-29s) are emerging fibrosis inhibitor targeting fibrogenic matrices during tissue fibrosis. This study is aimed to investigate clinical relevance and function of miR-29 signalling to subacromial bursa homeostasis in shoulder stiffness. Subacromial bursa in patients with rotator cuff lesion with or without shoulder stiffness who required open acromioplasty were harvested for assessing fibrosis histopathology using Manson's trichrome staining. Expressions of proinflammatory cytokines, fibrotic matrices, and miR-29s were quantified using RT-PCR and in situ hybridization. Range of motion and pain scores of the stiffness group were higher than those of non-stiffness group. Upregulated proinflammatory cytokines (IL-1β, IL-6, and TNF-α) and fibrotic matrices (collagen 1α1, 3α1, and 4α1) but decreased miR-29a and b expression existed in the stiffness group. Affected tissues exhibited severe fibrotic matrix accumulation, synovial hyperangiogenesis, hyperplasia, and strong miR-29a transcripts. In vitro, IL-1β rather than IL-6 and TNF-α decreased miR-29a expression of subacromial bursa fibroblasts. miR-29a knockdown escalated fibrotic matrix expression, whereas forced miR-29a expression alleviated the IL-1β-induced fibrotic matrix expression. Of interest, miR-29a transgenic mice displayed moderate responses to supraspinatus and infraspinatus tenotomy-induce fibrosis and gait irregularity of affected shoulders. Weak miR-29 signalling causes excessive fibrosis and remodelling in subacromial bursa and ultimately increases the prevalence of shoulder stiffness. This study reveals a new mechanistic underlying shoulder stiffness and highlights that sustained miR-29a potentially ameliorates the severity and function of stiff shoulder.


Background

Adequate pain management is mandatory for patients' early rehabilitation and improvement of outcome after total knee arthroplasty (TKA). Conventional pain management, consisted of mainly opioids, has some adverse effects such as dizziness and nausea. Motor blockade occasionally resulted from epidural analgesics. A novel multimodal analgesic strategy with peripheral nerve block, peri-articular injection (PAI) and intravenous patient controlled analgesia (IVPCA) were utilized for our patients receiving TKA. In this study, we compared the clinical efficacy and adverse effects in the group of multimodal analgesia (MA) or epidural analgesia alone.

Methods

One hundred and eighteen patients undergoing TKA with spinal anesthesia were enrolled. Patients of TKA received either our protocol of multimodal analgesia or patient controlled epidural analgesia (PCEA) alone. MA included ultrasound guided nerve block in femoral and obturator nerves before spinal anesthesia, and PAI mixed with NSAID, morphine, ropivacaine and epinephrine, as well as IVPCA after surgeries. The analgesic effect with numeric rating scale (NRS) and occurrence of adverse effects, including motor blockade, numbness, postoperative nausea/vomiting (PONV), and dizziness were recorded for all patients.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 8 | Pages 1194 - 1198
1 Nov 2002
Felländer-Tsai L Högberg E Wredmark T Arner P

We have used in vivo microdialysis to monitor postoperative physiological events in the synovial membrane after arthroscopy. The levels of lactate were significantly higher in the synovial membrane than in the reference tissue (subcutaneous fat) and there was a significant increase in lactate after operation. Blood flow, measured as the ethanol ratio, was stable in both tissues.

Our findings show that there was an increase in the local production of lactate since the levels of lactate in blood and the reference tissue were comparable and did not show a significant increase. There was also a consumption of glucose in the synovial membrane which was not observed in the reference tissue. The levels of pyruvate were higher in the synovial membrane.

A state of reperfusion occurs in the synovial membrane after moderate trauma such as standard arthroscopy of the knee. Microdialysis should be further evaluated in studies of the in vivo physiology of the synovial membrane.