Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 115 - 115
1 Feb 2020
Tran N Nuño N Reimeringer M
Full Access

Background

It is known that severe cases of intervertebral disc (IVD) disease may lead to the loss of natural intervertebral height, which can cause radiating pain throughout the lower back and legs. To this point, surgeons perform lumbar fusion using interbody cages, posterior instrumentation and bone graft to fuse adjacent vertebrae together, thus restoring the intervertebral height and alleviating the pain. However, this surgical procedure greatly decreases the range of motion (ROM) of the treated segment, mainly caused by high cage stiffness. Additive manufacturing can be an interesting tool to reduce the cage's elastic modulus (E), by adding porosity (P) in its design. A porous cage may lead to an improved osteointegration since there is more volume in which bone can grow. This work aims to develop a finite element model (FEM) of the L4-L5 functional spinal unit (FSU) and investigate the loss of ROM induced by solid and porous cages.

Materials and Methods

The Intact-FEM of L4-L5 was created, which considered the vertebrae, IVD and ligaments with their respective material properties1. The model was validated by comparing its ROM with that of other studies. Moments of 10 Nm were applied on top of L4 while the bottom of L5 was fixed to simulate flexion, extension, lateral bending and axial rotation2. The lumbar cages, posterior instrumentation and bone graft were then modelled to create the Cage-FEMs. Titanium was chosen for the instrumentation and cages. Cages with different stiffness were considered to represent porous structures. The solid cage had the highest modulus (E0=110 GPa, P0=0%) whereas the porous cages were simulated by lowering the modulus (E1=32.8 GPa, P1=55%; E2=13.9 GPa, P2=76%; E3=5.52 GPa, P3=89%; E4=0.604 GPa, P4=98%), following the literature3. The IVD was removed in Cage-FEMs to allow the implant's insertion [Fig. 1] and the previous loading scenarios were simulated to assess the effects of cage porosity on ROM.