Our hypothesis was that the surface finish of the femoral components deteriorated in accordance with the duration of implantation
The mean Ra values were: Control: Mean-0.0230 mm, SD- 0.00821. Medial Femoral condyle (0 – 60) = 0.0225 mm, SD – 0.00797 Medial Femoral Condyle (61 – 120) = 0.0244 mm, SD – 0.00532 Lateral Femoral condyle (0 – 60) = 0.0263 mm, SD – 0.00694 Lateral Femoral Condyle (61 – 120) = 0.0253 mm, SD – 0.00758 No statistically significant difference was seen in the mean-Ra of the femoral condyles compared to that of the control (P less than 0.05).
We investigated the changes in surface roughness of retrieved femoral components in 18 men and four women at revision knee surgery. The mean age at revision was 68.4 years and the mean period of implantation was for 55.6 months. Eighteen implants were retrieved for aseptic loosening and four for infection. The surface changes in the articulating areas were inspected visually and the roughness (Ra) analysed with a profilometer. Parallel scratching and burnishing were the two main forms of damage. The mean Ra measurements in the articulating areas showed no statistically significant difference when compared with those in a control area on either side of the patellar groove at the apex of the femoral flange. This suggests that it is not essential to revise a well-fixed and correctly aligned femoral component where the polished surface has become burnished or bears fine parallel scratches, if the revision is conducted solely for failure of the tibial component.
We describe the survival at ten years of 100 femoral components of the Freeman hip prosthesis. It is proximally hydroxyapatite (HA)-coated and was fixed without cement. Radiological assessment identified radiolucent lines (RLLs) and lytic lesions and was used to measure migration. The criterion of failure was revision or impending revision for aseptic femoral loosening. No femoral components were revised or are awaiting revision for aseptic loosening, giving 100% survival at ten years (95% confidence interval, 95.7 to 100), although 59 were at risk at ten years. Two components were revised for fracture of a ceramic head with damage to the trunnion. Although well fixed in each, for survival analysis we evaluated the hip as if the patient had died. Twelve acetabular components were revised and at each operation the femoral component was found to be well fixed, was not disturbed and remained in the survival analysis. Three patients were lost to follow-up, and 12 died with well-functioning prostheses. Radiologically, all except one of the components appeared to be well fixed with no RLLs and no lytic lesions at the latest follow-up. The mean vertical migration was 0.4 mm at one year, 0.8 mm at two years and 1.4 mm at ten years. One component had migrated 7.6 mm at ten years (2.1 mm in year 1) and developed RLLs in Gruen zones I and II. The symptoms, however, were only minor and revision was not indicated. Our study has shown that proximal HA coating gives effective fixation for a femoral component.
We have compared the survival and radiological outcome at ten years after total hip replacement using two techniques for preparing the femoral canal. The same prosthesis was used throughout and all operations were performed by the same surgical team. In technique 1 the canal was over-reamed by 2 mm and in technique 2 it was reamed to the same size as the prosthesis. Technique 1 was performed on 92 patients and technique 2 on 97 patients. The survival at ten years was 97.2% (90.6 to 99.2) for technique 1 and 98.8% (92.9 to 99.8) for technique 2. Vertical migration was greater in technique 1 (1.8 mm
We studied active flexion from 90° to 133° and passive flexion to 162° using MRI in 20 unloaded knees in Japanese subjects. Flexion over this arc is accompanied by backward movement of the medial femoral condyle of 4.0 mm and by backward movement laterally of 15 mm, i.e., by internal rotation of the tibia. At 162° the lateral femoral condyle lies posterior to the tibia.