Proper positioning of the components of a knee prosthesis for obtaining post-operative knee joint alignment is vital to obtain good and long term performance of a knee replacement. Although the reasons for failure of knee arthroplasty have not been studied in depth, the few studies that have been published claim that as much as 25% of knee replacement failures are related to malpositioning or malalignment [x]. The use of patient-matched cutting blocks is a recent development in orthopaedics. In contrast to the standard cutting blocks, they are designed to fit the individual anatomy based on 3D medical images. Thus, landmarks and reference axes can be identified with higher accuracy and precision. Moreover, stable positioning of the blocks with respect to the defined axes is easier to achieve. Both may contribute to better alignment of the components. The objective of this study was to check the accuracy of femoral component orientation in a cadaver study using specimen-matched cutting blocks in six specimens; first for a bi-compartmental replacement, and then for a tri-compartmental replacement in the same specimen. Frames with infrared reflective spherical markers were fixed to six cadaveric femurs and helical CT scans were made. A bone surface reconstruction was created and the relevant landmarks for describing alignment were marked using 3D visualisation software (Mimics). The centres of the spherical markers were also determined. Based on the geometry of the articular surface and the position of the landmarks, custom-made cutting blocks were designed. One cutting block was prepared to guide implantation of a bi-compartmental device and another one to guide implantation of the femoral component of a total knee replacement. The knee was opened and the custom-made cutting block for the bi-compartmental implant was seated onto the surface. The block was used to make the anterior cut, after which it was removed and replaced with the conventional cutting block using the same pinning holes to ensure the same axial rotational alignment. The other cuts were made using the conventional cutting block and the bi-compartmental femoral component was implanted. Afterwards, a similar procedure was used to make the extra cuts for the total knee component. The position of the components with respect to the reflective markers was measured by locating three reference points and “painting” the articular surface with a wand with reflective markers. The position of all marker spheres was continuously recorded with four infrared cameras and Nexus software.Purpose
Materials and Methods
After resection of the PCL differences in contact pressures and contact area between DD and PS failed to reach statistical significance although there was an obvious tendency towards lower pressures with the PS-design.
The objective of the present study was to analyze in vivo the knee joint kinematics in the sagittal plane in a patient population that had received either a fixed or a mobile TKA in a prospective, randomized, patient- and observer-blinded, clinical study.
All patients had been operated in a prospective, randomized, patient- and observer-blinded, clinical study, and had received either fixed or a mobile bearing, cruciate retaining Genesis II TKA for primary osteoarthritis. Fluoroscopic radiographs were evaluated by measuring the „patella tendon angle” as a measure of antero-posterior translation as well as the “kinematic index” as a measure of reproducibility.
Four patients showed a pseudarthrosis of the ischial or pubic bone. Three patients had persisting pain of the pseudarthrosis and needed another operative procedure. Hypaesthesia in the area of N. cutaneus femoris lateralis occurred in seven cases.
Clinical evaluation was carried out using HSS, Knee Society, Tegner Activity, and Patellar scores. A three-dimensional, quantitative gait analysis and simultaneous epicutaneous electromyographic recordings of 7 muscles surrounding the knee were carried out on all patients. 11 healthy volunteers (mean age 69 years, 60-75) served as control group.
Objective: The purpose of this study was to investigate whether radiographic scores correlate with histomorphological grading and expression of the hyaluronan receptor splice variant CD44v5 in osteoarthritic synovia, cartilage and synovial fluid.