header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 8 - 8
1 Dec 2017
Tian W Fan M Liu Y
Full Access

To introduce a new robot-assisted surgical system for spinal posterior fixation which called TiRobot, based on intraoperative three-dimensional images. TiRobot has three components: the planning and navigation system, optical tracking system and robotic arm system. By combining navigation and robot techniques, TiRobot can guide the screw trajectories for orthopedic surgeries.

In this randomised controlled study approved by the Ethics Committee, 40 patients were involved and all has been fully informed and sign the informed consent. 17 patients were treated by free-hand fluoroscopy-guided surgery, and 23 patients were treated by robot-assisted spinal surgery.

A total of 190 pedicle screws were implanted. The overall operation times were not different for both groups. None of the screws necessitated re-surgery for revised placement. In the robot-assisted group, assessment of pedicle screw accuracy showed that 102 of 102 screws (100%) were safely placed (<2 mm, category A+B). And mean deviation in entry point was 1.70 +/− 0.83mm, mean deviation in end point was 1.84 +/− 1.04mm. In the conventional freehand group, assessment of pedicle screw accuracy showed that 87 of 88 (98.9%) were safely placed (<2 mm, category A+B), 1 screw fall in category C, mean deviation in entry point was 3.73 +/− 2.28mm, mean deviation in end point was 4.11 +/− 2.31mm.

This randomised controlled study verified that robot-assisted pedicle screw placement with real-time navigation is a more accuracy and safer method, and also revealed great clinical potential of robot-assisted surgery in the future.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 53 - 53
1 Feb 2016
Tian W Zeng C An Y Liu Y
Full Access

Background

Accurate insertion of pedicle screws in scoliosis patients is a great challenge for surgeons due to the severe deformity of thoracic and lumbar spine. Meanwhile, mal-position of pedicle screw in scoliosis patients could lead to severe complications. Computer-assisted navigation technique may help improving the accuracy of screw placement and reducing complications. Thus, this meta-analysis of the published researches was conducted concentrating on accuracy of pedicle screw placement and postoperative assessment in scoliosis patients using computer-assisted navigation technique.

Methods

PubMed, Cochrane and Web of Science databases search was executed. In vivo comparative studies that assessed accuracy and postoperative evaluation of pedicle screw placement in scoliosis patients with or without navigation techniques were involved and analysed.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 4 - 4
1 Feb 2016
Tian W Jin P
Full Access

Objective

To compare between the CAMISS-TLIF group and the OP-TLIF group in the clinical efficacy and radiographic manifest.

Methods

This study was a registration study, selected 27 patients with lumbar spondylolisthesis from May 2011 to March 2014 in our hospital. Patients in one group are treated with computer assisted navigation minimally invasive TLIF (CAMISS -TLIF) while the others are treated with the OP-TLIF (OPEN-TLIF). The former group has 13 cases while the latter group has 14 cases. We collected information and present statistical analysis on the following aspects in order to compare the two different surgical methods of treatment. They are the operation duration, blood loss, days of hospitalisation, the preoperative and follow-up JOA and JOA improvement rate, the preoperative and follow-up ODI scores, the preoperative and follow-up VAS and Odom's criteria. By analysing the follow-up CT results, we compare the pedicle screw accuracy rate between the two groups in order to make a comprehensive assessment of these two surgical methods.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 14 - 14
1 Feb 2016
Lang Z Tian W Liu Y Liu B Yuan Q
Full Access

Minimally invasive (MIS) screw fixation for Hangman's fracture can decrease iatrogenic soft-tissue injury compared with conventional open approach, but increase the risk of instrumentation-related complications due to lack of anatomical landmarks. With the advantages, the intra-operative three-dimensional fluoroscopy-based navigation (ITFN) system seems to be an inherent partner for MIS techniques. The purpose of this study was to evaluate the accuracy and feasibility of MIS techniques incorporating with ITFN for treating Hangman's fracture. 20 patients with Hangman's fracture underwent C2-C3 pedicle screw fixation using ITFN. 6 patients used MIS technique, with the other 14 patients using conventional open technique. Preoperative visual analogue score (VAS) was 5.7±1.4 in CAOS-MIS group and 5.5±0.9 in CAOS-open group. Operative time, blood loss and postoperative neurovascular complications were recorded. The accuracy of screw positions was studied by postoperative CT scan. All patients were followed up for at least 6 months and the fusion status was ascertained by dynamic radiographs. The average operative time was 134.2±8.0 min in CAOS-MIS group and 139.3±25.8 min in CAOS-open group, and there was no significant difference between the two (p&gt;0.01). The blood loss was 66.7±25.8 ml in CAOS-MIS group and 250.0±141.4 ml in CAOS-open group. Statistical difference existed with CAOS-MIS group significant less than CAOS-open group (p&lt;0.01). A total of 80 screws were inserted. No screw-related neurovascular injury was observed. Post-operative CT scan revealed 83.3% (20/24) screws of grade 1 and 16.7% screws of grade 2 (4/24) in CAOS-MIS group, meanwhile 89.3% screws of grade 1 (50/56) and 10.7% screws of grade 2 (6/56) in CAOS-open group. There was no grade 3 screw detected. Fisher's exact test showed there was no statistical difference between these two groups (p&gt;0.01). There was no statistical difference in pre-operative VAS between these two groups (p&gt;0.01). Compared with the CAOS-open group (1.7±0.6), neck pain VAS at 6-month follow-up in CAOS-MIS group (0.3±0.5) was significantly lower (p&lt;0.01). Solid fusion was demonstrated in all the cases by dynamic radiographs. So it is feasible and safe for percutaneous minimally invasive C2-C3 pedicle screw fixation for Hangman's fracture using intra-operative three-dimensional fluoroscopy-based navigation, which can also decrease the incidence of post-operative neck pain.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 10 - 10
1 Feb 2016
Tian W Liu Y Fan M Han X
Full Access

Background

The Robotic Spinal Surgery System (RSSS) is a robot system designed for pedicle screw insertion containing image based navigation system, trajectory planning system and force state recognition system. The special force state recognition system can guarantee the safety during the operation. The RSSS is helpful in pedicle screw insertion surgery and it will be applied in clinic in the near future. In this study, we evaluated the accuracy and safety of RSSS in an animal experiment.

Methods

Computer tomography (CT) scan data for two anesthetised experimental sheep was acquired using the C-arm and transferred to RSSS for pre-surgery screw trajectory planning. With the assist of RSSS, we inserted 8 and 4 screws into two sheep respectively. Operation time and blood loss during the surgery were recorded, and CT scan was repeated after surgery. Real screw position and trajectory acquired by the post-surgery CT scan and ideal trajectory planned by RSSS were compared to evaluate the accuracy and safety of RSSS. The result is shown as mean±SD.


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1165 - 1168
1 Sep 2011
Leung K Ngai W Tian W

There is no unified national training system for orthopaedic surgeons in China. With such rapid progress in many aspects of life in China, there is an imminent need for improvement in the training of orthopaedic specialists. Since 2003 the orthopaedic community in Hong Kong has been working in collaboration with their colleagues in mainland China to develop a training system for orthopaedic surgery. We adopted the system from the Royal College of Surgeons of Edinburgh (RCSEd), setting up a trial centre in the Beijing Jishuitan hospital in 2006, with trainers and trainees attaining the standards set by RCSEd and the Hong Kong College of Orthopaedic Surgeons (HKCOS). This trial is ongoing, with the success of two trainees who passed the exit examination in 2010 and became the first Chinese orthopaedic surgeons with a joint fellowship of both the RCSEd and the HKCOS. Following this inaugural success, we are confident that China will develop a training system for orthopaedic surgeons to a consistently high international standard.