header advert
Results 1 - 15 of 15
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 8 - 8
10 Feb 2023
Brennan A Blackburn J Thompson J Field J
Full Access

Thumb carpometacarpal joint (CMCJ) arthritis is a common and debilitating condition. The mainstay of surgical management is Trapeziectomy. Concerns about possible functional implications of collapse of the metacarpal into the arthroplasty space as well as the potential for scaphometacarpal led to the development of techniques to try and prevent this. The purpose of this study was to investigate if there were any significant differences in the long-term outcomes of patients who participated in a randomized trial of trapeziectomy alone compared with trapeziectomy with ligament reconstruction and tendon interposition (LRTI).

Sixty-five patients participated in our original trial, the 1 year findings of which were published in 2007. These patients were invited for a follow-up visit at a mean of 17 years (range 15–20) postoperatively. Twenty-eight patients attended, who had 34 operations, 14 trapeziectomy alone and 20 with LRTI. Patients were asked to complete a visual analogue scale (VAS) for satisfaction with the outcome of their procedure, rated on a scale from 0 (most dissatisfied) to 100 (most satisfied). They also completed the short version of the Disabilities of the Arm, Shoulder and Hand Score (QuickDASH) at their appointment. They underwent a functional assessment with a hand therapist and had a radiograph of the thumb.

There were no statistically significant differences between the two groups in terms of satisfaction with surgery or functional outcomes, with most measurements showing minimal or no differences in means between the two groups. There was no difference in the space between the metacarpal and scaphoid on radiograph. Radial abduction was the only parameter that was significantly greater in the patients with simple trapeziectomy (median 79°) compared with trapeziectomy with LRTI (median 71°) (p = 0.04). Even at 17 years there is no significant benefit of LRTI over trapeziectomy alone for thumb carpometacarpal joint osteoarthritis.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 13 - 13
1 Feb 2021
Gardner C Karbanee N Wang L Traynor A Cracaoanu I Thompson J Hardaker C
Full Access

Introduction

Total Hip Arthroplasty (THA) devices are now increasingly subjected to a progressively greater range of kinematic and loading regimes from substantially younger and more active patients. In the interest of ensuring adequate THA solutions for all patient groups, THA polyethylene acetabular liner (PE Liner) wear representative of younger, heavier, and more active patients (referred to as HA in this study) warrants further understanding.

Previous studies have investigated HA joint related morbidity [1]. Current or past rugby players are more likely to report osteoarthritis, osteoporosis, and joint replacement than a general population.

This investigation aimed to provide a preliminary understanding of HA patient specific PE liner tribological performance during Standard Walking (SW) gait in comparison to IS0:14242-1:2014 standardized testing.

Materials and Methods

Nine healthy male subjects volunteered for a gait lab-based study to collect kinematics and loading profiles. Owing to limitations in subject selection, five subjects wore a weighted jacket to increase Body Mass Index ≥30 (BMI). An induced increase in Bodyweight was capped (<30%BW) to avoid significantly effecting gait [3] (mean=11%BW).

Six subjects identified as HA per BMI≥30, but with anthropometric ratios indicative of lower body fat as previously detailed by the author [2] (Waist-to-hip circumference ratio and waist circumference-to-height ratio). Three subjects identified as Normal (BMI<25). Instrumented force plate loading profiles were scaled (≈270%BW) in agreement with instrumented hip force data [4].

A previously verified THA (Pinnacle® Marathon® 36×56mm, DePuy Synthes) Finite Element Analysis wear model based on Archard's law and modified time hardening model [5] was used to predict geometrical changes due to wear and deformation, respectively (Figure 1). Subject dependent kinematic and loading conditions were sampled to generate, for both legs, 19 SW simulation runs using a central composite design of response surface method.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 141 - 141
1 Apr 2019
Pryce G Sabu B Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Introduction

Impingement of total hip arthroplasties (THAs) has been reported to cause rim damage of polyethylene liners, and in some instances has led to dislocation and/or mechanical failure of liner locking mechanisms in modular designs. Elevated rim liners are used to improve stability and reduce the risk of dislocation, however they restrict the possible range of motion of the joint, and retrieval studies have found impingement related damage on lipped liners.

The aim of this study was to develop a tool for assessing the occurrence of impingement under different activities, and use it to evaluate the effects a lipped liner and position of the lip has on the impingement-free range of motion.

MATERIALS & METHOD

A geometrical model incorporated a hemi-pelvis and femur geometries of one individual with a THA (DePuy Pinnacle® acetabular cup with neutral and lipped liners; size 12 Corail® stem with 32mm diameter head) was created in SOLIDWORKS (Dassault Systèmes). Joint motions were taken from kinematic data of activities of daily living that were associated with dislocation of THA, such as stooping to pick an object off the floor and rolling over. The femoral component was positioned to conform within the geometry of the femur, and the acetabular component was orientated in a clinically acceptable position (45° inclination and 20° anteversion). Variation in orientation of the apex of the lip was investigated by rotating about the acetabular axes from the superior (0°) in increments of 45° (0°−315°), and compared to a neutral liner.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 48 - 48
1 Apr 2019
Etchels L Wang L Al-Hajjar M Williams S Thompson J Fisher J Wilcox R Jones A
Full Access

INTRODUCTION

There is great potential for the use of computational tools within the design and test cycle for joint replacement devices.

The increasing need for stratified treatments that are more relevant to specific patients, and implant testing under more realistic, less idealised, conditions, will progressively increase the pre-clinical experimental testing work load. If the outcomes of experimental tests can be predicted using low cost computational tools, then these tools can be embedded early in the design cycle, e.g. benchmarking various design concepts, optimising component geometrical features and virtually predicting factors affecting the implant performance. Rapid, predictive tools could also allow population-stratified scenario testing at an early design stage, resulting in devices which are better suited to a patient-specific approach to treatment.

The aim of the current study was to demonstrate the ability of a rapid computational analysis tool to predict the behaviour of a total hip replacement (THR) device, specifically the risk of edge loading due to separation under experimental conditions.

METHODS

A series of models of a 36mm BIOLOX® Delta THR bearing (DePuy Synthes, Leeds, UK) were generated to match an experimental simulator study which included a mediolateral spring to cause lateral head separation due to a simulated mediolateral component misalignment of 4mm. A static, rigid, frictionless model was implemented in Python (PyEL, runtime: ∼1m), and results were compared against 1) a critically damped dynamic, rigid, FE model (runtime: ∼10h), 2) a critically damped dynamic, rigid, FE model with friction (µ = 0.05) (runtime: ∼10h), and 3) kinematic experimental test data from a hip simulator (ProSim EM13) under matching settings (runtime: ∼6h). Outputs recorded were the variation of mediolateral separation and force with time.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 27 - 27
1 Apr 2019
Wang L Beedall D Thompson J
Full Access

INTRODUCTION

Component positioning of an artificial hip joint plays a key role in durability of implant. Despite the fact that a number of numerical, experimental and clinical studies have been carried out to investigate the effects of cup inclination on polyethylene wear, steep inclination has been reported to be associated with both high and low volumetric wear. Moreover, how cup anteversion affects wear and its interaction with inclination are still unclear. To address these knowledge gaps, in this study wear and contact mechanics of a hip joint under various cup positioning has been investigated by using FEA (Finite Element Analysis).

METHOD

A Pinnacle® Marathon neutral liner 36×56mm was chosen to model the wear and creep over 3 million cycles (mc) based on the Archard's law and modified time hardening model in ANSYS, respectively. Central composite design of response surface method was used to generate 9 FEA runs, where the operative inclination angles varied from 35º, 45º to 55º and operative anteversion angles differed amongst 0º, 15º and 30º. The range of cup angles were chosen to be similar to the Lewinnek “golden” safe zone for dislocation. The gait cycle as specified in ISO 14242-1 was applied to the femoral head.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 76 - 76
1 Apr 2019
Vasiljeva K Al-Hajjar M Lunn D Chapman G Redmond A Flatters I Thompson J Jones A
Full Access

Introduction

One of the known mechanisms which could contribute to the failure of total hip replacements (THR) is edge contact. Failures associated with edge contact include rim damage and lysis due to altered loading and torques. Recent study on four THR patients showed that the inclusion of pelvic motions in a contact model increased the risk of edge contact in some patients. The aim of current study was to determine whether pelvic motions have the same effect on contact location for a larger patient cohort and determine the contribution of each of the pelvic rotations to this effect.

Methods

Gait data was acquired from five male and five female unilateral THR patients using a ten camera Vicon system (Oxford Metrics, UK) interfaced with twin force plates (AMTI) and using a CAST marker set. All patients had good surgical outcomes, confirmed by patient-reported outcomes and were considered well-functioning, based on elective walking speed. Joint contact forces and pelvic motions were obtained from the AnyBody modelling system (AnyBody Technologies, DK). Only gait cycle regions with available force plate data were considered. A finite element model of a 32mm head on a featureless hemispherical polyethylene cup, 0.5mm radial clearance, was used to obtain the contact area from the contact force. A bespoke computational tool was used to analyse patients' gait profiles with and without pelvic motions. The risk of edge contact was measured as a “centre proximity angle” between the cup pole and centre of the contact area, and “edge proximity angle” between the cup pole and the furthest contact area point away from the pole. Pelvic tilt, drop and internal-external rotation were considered one at a time and in combinations.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 18 - 18
1 Dec 2018
Ippolito J Rivero S Lelkes V Patterson F Beebe K Thompson J Benevenia J
Full Access

Aim

The purpose of this study was to report on outcomes after stabilization of large skeletal defects following radical debridement of hip or knee infections and staged reimplantation using segmental antibiotic mega-spacers.

Method

From 1998–2018, 39 patients (18 male, 21 female) were treated for musculoskeletal infections at the hip (14) or knee (25). Patients were treated for infection after a procedure related to oncology (20), arthroplasty (16), or trauma (3). Following debridement, defects were stabilized with antibiotic impregnated PMMA and intramedullary nails. All patients underwent a standardized protocol: 6 weeks of intravenous antibiotics followed by 6 weeks of oral antibiotics guided by intraoperative cultures. After a 6-week holiday of antibiotics, repeat intraoperative cultures and inflammatory markers were analysed for infection resolution. Success was defined by reimplantation without additional infection-related complications or requirement of suppressive antibiotics at latest follow-up.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 60 - 60
1 Mar 2017
Lancaster-Jones OO Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims

Clinically many factors such as variations in surgical positioning, and patients' anatomy and biomechanics can affect the occurrence and severity of edge loading which may have detrimental effect on the wear and durability of the implant. Assessing wear of hundreds of combinations of conditions would be impractical, so a preclinical testing approach was followed where the occurrence and severity of edge loading can be determined using short biomechanical tests. Then, selected conditions can be chosen under which the wear can be determined. If a wear correlation with the magnitude of dynamic separation or the severity of edge loading can be shown, then an informed decision can be made based upon the biomechanical results to only select important variables under which the tribological performance of the implant can be assessed. The aim of this study was to determine the relationship between the wear of ceramic-on-ceramic bearings and the (1) magnitude of dynamic separation, (2) the maximum force reached during edge loading and (3) the severity of edge loading resulting from component translational mismatch between the head and cup centres.

Methods

The Leeds II hip joint simulator with a standard walking cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta, DePuy Synthes Joint Reconstruction, Leeds, UK.) were used. The study was in two parts. Part one: a biomechanical study where the dynamic separation, the maximum load during edge loading, and the duration of edge loading alongside the magnitude of forces under edge loading (severity of edge loading) were assessed. Part two; a wear study where the wear rates of the bearing surfaces were assessed under a series of input conditions. These input testing conditions included inclining the acetabular cups at 45° and 65° cup inclination angle (in-vivo equivalent), with 2, 3, and 4mm medial-lateral component mismatch between the centres of the head and the cup. This equated to six conditions being assessed, each with three repeats for the biomechanical test, and six repeats completed for the wear study.

The severity of edge loading was assessed as described in Equation 1.

Severity of Edge Loading = ∫tt0 F(x) dx + ∫tt0 F(y) dy … Equation 1,

where F(x) is the axial load, F(y) is the medial-lateral load and t-t0 is the duration of edge loading.

The wear of the ceramic bearings were determined using gravimetric analysis (XP205, Mettler Toledo, UK).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 61 - 61
1 Mar 2017
Lancaster-Jones OO Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims

There are many variables that can affect the occurrence and severity of edge loading in hip replacement. A translational mismatch between the centres of rotation of the head and cup may lead to dynamic separation, causing edge loading and increased wear. Combining a steep inclination angle with such translational mismatch in the medial-lateral axis caused a larger magnitude of separation and increased severity of edge loading. Previous studies have shown variation in the hip Swing Phase Load (SPL) during gait between different patients. The aim of this study was to apply a translational mismatch and determine the effect of varying the SPL on the occurrence and severity of edge loading under different cup inclination angles in a hip joint simulator.

Methods

The Leeds II hip joint simulator with a standard gait cycle and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta) were used in this study. The study was in two stages; [1] a biomechanical study where the magnitude of dynamic separation, the duration of edge loading and the magnitude of force under edge loading (severity) were assessed under variations in component positioning and SPLs. [2] A wear study to assess edge loading with selected input conditions. For the biomechanical study, a combination of four mismatches, three cup inclination angles, and eight SPLs (Table 1) were investigated. For the wear study, three SPL conditions were selected with one cup angle and one mismatch (Table 1). Three million cycles were completed under each condition. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed (significance taken at p<0.05).

Table 1: Study matrix


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 13 - 13
1 Feb 2017
Ali M Al-Hajjar M Thompson J Isaac G Jennings L Fisher J
Full Access

Introduction

Variations in component position can lead to dynamic separation and edge loading conditions. In vitro methods have been developed to simulate edge loading conditions and replicate stripe wear, increased wear rate, and bimodal wear debris size distribution, as observed clinically [1, 2]. The aim of this study was to determine the effects of translational and rotational positioning on the occurrence of dynamic separation and severity of edge loading, and then investigate the wear rates under the most severe separation and edge loading conditions on an electromechanical hip joint simulator.

Materials and Methods

A hip joint simulator (ProSim EM13, Simulation Solutions, UK) was set up with 36mm diameter ceramic-on-ceramic (BIOLOX®delta, PINNACLE®, DePuy Synthes, UK) hip replacements. Three axes of rotation conditions (ISO 14242-1 [3]) was applied to the femoral head. This study was in two parts. I) A biomechanical test was carried out at 45° (n=3) and 65° (n=3) cup inclination angles with 1, 2, 3 and 4 (mm) medial-lateral translational mismatch between the centres of the head and cup. The amount of dynamic separation displacement between the head and cup was measured using a position sensor. The severity of edge loading was determined from the area under the axial force and medial-lateral force outputs during the time of separation [4]. II) A wear test was carried out at 45° (n=6) and 65° (n=6) cup inclination angles for three million cycles with translational mismatch of 4mm between the head and cup. The lubricant used was diluted new-born calf serum (25% v/v). Volumetric wear measurements were undertaken at one million cycle intervals and mean wear rates were calculated with 95% confidence limits. Statistical analysis was carried out using ANOVA and a t-test with significance levels taken at p<0.05.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 92 - 92
1 May 2016
Lancaster-Jones O Al-Hajjar M Williams S Jennings L Thompson J Isaac G Fisher J
Full Access

Introduction and Aims

In order to improve the longevity and design of an implant, a wide range of pre-clinical testing conditions should be considered including variations in surgical delivery, and patients' anatomy and biomechanics. The aim of this research study was to determine the effect of the acetabular cup inclination angle with different levels of joint centre mismatch on the magnitude of dynamic microseparation, occurrence and severity of edge loading and the resultant wear rates in a hip joint simulator.

Methods

The six-station Leeds Mark II Anatomical Physiological Hip Joint Simulator and 36mm diameter ceramic-on-ceramic bearings (BIOLOX® delta) were used in this study. A standard gait cycle, with a twin-peak loading (2.5kN peak load and approximately 70N swing phase load), extension/flexion 15°/+30° and internal/external ±10° rotations, was applied. Translational mismatch in the medial-lateral axis between the centres of rotation of the head and the cup were considered. In this study, mismatches of 2, 3 and 4 (mm) were applied. Two acetabular cup inclination angles were investigated; equivalent to 45° and 65° in-vivo. These resulted in a total of six conditions [Figure 1] with n=6 for each condition. Three million cycles were completed under each condition. The lubricant used was 25% (v/v) new-born calf serum supplemented with 0.03% (w/v) sodium azide to retard bacterial growth. The wear of the ceramic bearings were determined using a microbalance (XP205, Mettler Toledo, UK) and a coordinate measuring machine (Legex 322, Mitutoyo, UK). The stripe wear was analysed using RedLux software. The dynamic microseparation displacement was measured using a linear variable differential transformer. Mean wear rates and 95% confidence limits were determined and statistical analysis (one way ANOVA) completed with significance taken at p<0.05. Results Increasing the medial-lateral joint centre mismatch from 2 to 3 to 4mm resulted in an increased dynamic microseparation [Figure 2]. A similar trend was observed for the wear. A higher level of medial-lateral mismatch increased the wear rate under both 45° and 65° cup inclination angle conditions [Figure 3]. The mean wear rates obtained under 65° were significantly higher compared to those obtained under the 45° cup inclination angle conditions for a given medial-lateral mismatch in the joint centre (p=0.02 for 2mm mismatch, p=0.02 for 3 mm mismatch, and p<0.01 for 4mm mismatch).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 88 - 88
1 Jan 2016
Clarke I Halim T Burgett-Moreno M Thompson J Vinciguerra J Donaldson T
Full Access

Introduction

Over 40-years the dominant form of implant fixation has been bone cement (PMMA). However the presence of circulating PMMA debris represents a 3rd-body wear mechanism for metal-on-polyethylene (MPE). Wear studies using PMMA slurries represent tests of clinical relevance (Table 1). Cup designs now use many varieties of highly-crosslinked polyethylene (HXPE) of improved wear resistance. However there appears to be no adverse wear studies of vitamin-E blended cups.1–4 The addition of vitamin E as an anti-oxidant is the currently preferred method to preserve mechanical properties and ageing resistance of HXPE. Therefore the present study examined the response of vitamin-E blended liners to PMMA abrasion combined with CoCr and ceramic heads. The hip simulator wear study was run in two phases to compare wear with, (i) clean lubricants and (ii) PMMA slurries.

Methods

The vitamin-e blended polyethylene liners (HXe+) were provided by DJO Surgical (Austin, TX) with 40mm CoCr and ceramic femoral heads (Biolox-delta). Polyethylene liners were run in standard “Inverted” test. (Table 1) All cups were run in ‘clean’ serum lubricant for 6-million load cycles (6Mc)5 and in a debris slurry (PMMA: 5mg/ml concentration) for 2Mc.4 A commercial bone cement powder was used as “abrasive” (Biomet, Warsaw, IN). PMMA slurries were added at test intervals 6, 6.5, 7 and 7.5Mc.4 Wear was assessed gravimetrically and characterized by linear regression. Bearing roughness was analyzed by interferometry and SEM.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 77 - 77
1 Jan 2016
Al-Hajjar M Williams S Jennings L Thompson J Isaac G Ingham E Fisher J
Full Access

Introduction

Increased wear rates [1, 2] and acetabular rim fracture [3] of hip replacement bearings reported clinically have been associated with edge loading, which could occur due to rotational and/or translational mal-positioning [4]. Surgical mal-positioning can lead to dynamic microseparation mechanisms resulting in edge loading conditions. In vitro microseparation conditions have replicated stripe wear and the bi-modal wear debris distribution observed clinically [5, 6]. The aim of this study was to investigate the effect of steep cup inclination, representing rotational mal-positioning, on the magnitude of dynamic microseparation, severity of edge loading, and the resulting wear rate of a ceramic-on-ceramic bearing, under surgical translational mal-positioning conditions.

Materials and Methods

Ceramic-on-ceramic bearings where the ceramic liner was inserted into a titanium alloy cup (BIOLOX® delta and Pinnacle® respectively, DePuy Synthes, UK) were tested on the six-station Leeds II hip simulator. The first test was run with the cups inclined at an angle equivalent, clinically, to 45° (n=6) and the second test was run with the cups inclined at an angle equivalent, clinically, to 65° (n=6). A standard gait cycle was run. A fixed surgical translational mal-positioning of 4mm between the centres of rotations of the head and the cup in the medial/lateral axis was applied on all stations. Both tests ran for three million cycles each. The lubricant used was 25% new-born calf serum. Wear was assessed gravimetrically using a microbalance (XP205, Mettler Toledo, UK) and geometrically using a coordinate measuring machine (CMM, Legex 322, Mitutoyo, UK). Statistical analysis was done using one way ANOVA with significance taken at p<0.05.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 2 - 2
1 Dec 2013
Al-Hajjar M Clarkson P Williams S Jennings L Thompson J Fisher J
Full Access

Introduction

Stripe wear, observed on retrieved ceramic hip replacements, has only been replicated in vitro under translational mal-positioning conditions where the centres of rotation of the head and the cup are mismatched1,2; an in vitro condition termed “microseparation”.

The aim of this study was to compare the edge loading mechanisms observed under microseparation conditions due to translational mal-positioning conditions simulated on two different hip joint simulators.

Materials and Methods

The components used in this study were zirconia-toughened-alumina ceramic-on-ceramic bearings (36 mm) inserted into titanium alloy acetabular cups (BIOLOX® delta and Pinnacle® respectively, DePuy Synthes Joint Reconstruction, Leeds, UK). Six couples were tested for two million cycles under 0.5 mm dynamic microseparation conditions on the Leeds II hip joint simulator as described by Nevelos et al2 and Stewart et al3 (Figure 1). Ten bearing couples were tested for two million cycles under microseparation conditions achieved in two different ways on the ProSim pneumatic hip joint simulator (SimSol, Stockport, UK). Two conditions were tested; condition (1)- the femoral head was left to completely separate (the vertical motion was controlled at 1 mm) causing it to contact the inferior rim of the acetabular cup before edge loading on the superior rim at heel strike (n = 5) and condition (2)- springs were placed below the plate holding the femoral head to control the tilt of the head laterally towards the rim of the acetabular cup as the negative pressure was applied (n = 5; Figure 1). Wear was assessed gravimetrically every million cycles using a microbalance (Mettler AT201, UK). Three-dimensional reconstructions of the wear area on the heads were obtained using a coordinate measuring machine (Legex 322, Mitutoyo, UK) and SR3D software (Tribosol, UK).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 227 - 227
1 Sep 2012
Conroy E Flannery O McNulty J Thompson J Kelly E
Full Access

Introduction

Antegrade K wiring of the fifth metacarpal for treatment of displaced metacarpal neck fractures is a well recognized surgical procedure. However it is not without complication and injury to the dorsal cutaneous branch of the ulnar nerve has been reported in up to 15% of cases.

Methods

We performed a cadaver study to determine the proximity of this nerve to the K wire insertion point at the base of the fifth metacarpal. K wires were percutaneously inserted under image intensification in sixteen cadaver hands and advanced into the head of the metacarpal. Wires were then cut and bent outside the skin. This was then followed by meticulous dissection of the ulnar nerve from proximal to distal. A number of measurements were taken to identify the distance from the insertion point of the K wire to each branch of this nerve.