Please check your email for the verification action. You may continue to use the site and you are now logged in, but you will not be able to return to the site in future until you confirm your email address.
Aims: To investigate the optimal dimension interference screw for fixation of a tendon graft in a bone tunnel. Methods: A porcine model was developed to represent ACL reconstruction in the distal femur. A standard 8mm size pig flexor tendon graft was inserted into a standard 8mm bone tunnel. The screw dimensions were varied. The tendon was loaded with a constant force using a Universal Testing Machine. The construct was tested to failure at a rate of 50mm/minute. Load, deformation data and mechanism of construct failure were recorded. The screw diameters of 7, 8 and 9mm and lengths of 20, 25 and 30mm were tested in 80 individual reconstructions. Results: The mean pull out force was similar between the 7mm (191N) and 8mm screws (188N), but significantly different for the 9mm screw (109N) (p<
0.05) The 30mm screw (231N) was marginally better than the 20mm screw (215N) (p>
0.05). The mechanism of failure however, was significantly different between the groups. All grafts fixed with a 9mm screw failed at the tunnel opening (100%), whereas those fixed with a 7mm screw failed by slippage of the graft along the length of the tunnel (83%). The screw length did not affect the mechanism of graft failure. Conclusion: Our results suggest that a screw size equal to or 1mm less than the diameter of the tunnel gives the optimum initial interference screw fixation of tendon in a bone tunnel.