Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 24 - 24
1 Mar 2021
Preutenborbeck M Brown C Tarsuslugil S
Full Access

Abstract

OBJECTIVES

Hip dislocations remain one of the most common complications of total-hip-arthroplasty (Zahar et al.,2013). There is contradicting evidence whether the surgical approach affects dislocation rates (Sheth et al., 2015; Maratt, 2018). The aim of this study was to develop instrumentation to measure hip forces during simulated range-of-motion tests where the hip was forced to dislocate in cadaveric specimen.

METHODS

A total-hip-replacement was completed on both hips of a single cadaveric specimen by a trained orthopaedic surgeon during a lab initiated by DePuy. A direct-anterior surgical approach was performed on the right leg and a posterior approach was performed on the left. Before final implantation of the femoral component, a trial reduction with a femoral neck trial was performed. The neck trial was modified with strain gauges placed around the shaft which were designed to measure resultant hip forces throughout the range-of-motion assessment. A force-calibration was performed using a calibration-block to convert strain to force values.