Whether laminar airflow (LAF) in the operating room (OR) is effective for decreasing periprosthetic joint infection (PJI) following total joint arthroplasty (TJA) remains a clinically significant yet controversial issue. This study investigated the association between operating room ventilation systems and the risk of PJI in TJA patients. We performed a retrospective observational study on consecutive patients undergoing primary total knee arthroplasty (TKA) and total hip arthroplasty (THA) from January 2013-September 2017 in two surgical facilities within a single institution, with a minimum 1-year follow-up. All procedures were performed by five board-certified arthroplasty surgeons. The operating rooms at the facilities were equipped with LAF and turbulent ventilation systems, respectively. Patient characteristics were extracted from clinical records. PJI was defined according to Musculoskeletal Infection Society criteria within 1-year of the index arthroplasty. A multivariate logistic regression model was performed to explore the association between LAF and risk of 1-year PJI, and then a sensitivity analysis using propensity score matching (PSM) was performed to further validate the findings.Aim
Method
Despite recent advances in the diagnosis of periprosthetic joint infection(PJI), identifying the infecting organism continues to be a challenge, with up to a third of PJIs reported to have negative cultures. Current molecular techniques have thus far been unable to replace culture as the gold standard for isolation of the infecting pathogen. Next- generation sequencing(NGS) is a well-established technique for comprehensively sequencing the entire pathogen DNA in a given sample and has recently gained much attention in many fields of medicine. Our aim was to evaluate the ability of NGS in identifying the causative organism(s) in patients with PJI. After obtaining Institutional Review Board approval and informed consent for all study participants, samples were prospectively collected from 148 revision total joint arthroplasty procedures (83 knees, 65 hips). Synovial fluid, deep tissue and swabs were obtained at the time of surgery and shipped to the laboratory for NGS analysis (MicroGenDx). Deep tissue specimens were also sent to the institutional laboratory(Thomas Jefferson University Hospital) for culture. PJI was diagnosed using the Musculoskeletal Infection Society(MSIS) definition of PJI. Statistical analysis was performed using SPSS software.Introduction
Methods
The use of irrigation solution during surgical procedures is a common and effective practice in reduction of bioburden and the risk of subsequent infection. The optimal irrigation solution to accomplish this feat remains unknown. Many surgeons commonly add topical antibiotics to irrigation solutions assuming this has topical effect and eliminates bacteria. The latter reasoning has never been proven. In fact a few prior studies suggest addition of antibiotics to irrigation solution confers no added benefit. Furthermore, this practice adds to cost, has the potential for anaphylactic reactions, and may also contribute to the emergence of antimicrobial resistance. We therefore sought to compare the antimicrobial efficacy and cytotoxicity of irrigation solution containing polymyxin-bacitracin versus other commonly used irrigation solutions. Using two Cytotoxicity analysis in human fibroblast, osteoblast, and chrondrocyte cells exposed to each of the respective irrigation solutions was performed by visualization of cell structure, lactate dehydrogenase (LDH) activity and evaluation of vital cells. Toxicity was quantified by determination of LDH release (ELISA % absorbance; with higher percentage considered a surrogate for cytotoxicity). Descriptive statistics were used to present means and standard deviation of triplicate experimental runs.Introduction
Methods
Recent reports demonstrate that Next Generation Sequencing (NGS) facilitates pathogen identification in the context of culture-negative PJI; however the clinical relevance of the polymicrobial genomic signal often generated remains unknown. This study was conceived to explore: (1) the ability of NGS to identify pathogens in culture-negative PJI; and (2) determine whether organisms detected by NGS, as part of a prospective observational study, had any role in later failure of patients undergoing surgical treatment for PJI. In this prospective study samples were collected in 238 consecutive patients undergoing revision total hip and knee arthroplasties. Of these 83 patients (34.9%) had PJI, as determined using the Musculoskeletal Infection Society (MSIS) criteria, and of these 20 were culture-negative (CN-PJI). Synovial fluid, deep tissue and swabs were obtained at the time of surgery and sent for NGS and culture/MALDI-TOF. Patients undergoing reimplantation were excluded. Treatment failure was assessed using the previously described Delphi criteria. In cases of re-operation, organisms present were confirmed by culture and MALDI-TOF. Concordance of the infecting pathogen(s) at failure with the NGS analysis at the initial stage CN- PJI procedure was determined.Background
Methods
The aim of this study was to examine the association between
postoperative glycaemic variability and adverse outcomes following
orthopaedic surgery. This retrospective study analyzed data on 12 978 patients (1361
with two operations) who underwent orthopaedic surgery at a single
institution between 2001 and 2017. Patients with a minimum of either
two postoperative measurements of blood glucose levels per day,
or more than three measurements overall, were included in the study.
Glycaemic variability was assessed using a coefficient of variation
(CV). The length of stay (LOS), in-hospital complications, and 90-day
readmission and mortality rates were examined. Data were analyzed
with linear and generalized linear mixed models for linear and binary
outcomes, adjusting for various covariates.Aims
Patients and Methods
Different perioperative strategies have been implemented to reduce the devastating burden of infection following arthroplasty. The use of iodophor-impregnated adhesive incise drapes is one such strategy. Despite its wide adoption, there is little proof that this practice leads to a reduction of bacterial colonization. The aim of this randomized, prospective study was to evaluate the efficacy of iodophor-impregnated adhesive drapes for reducing bacterial count at the incision site. A total of 96 patients undergoing open joint preservation procedure of the hip were enrolled in this prospective, randomized clinical trial of iodophor-impregnated adhesive drapesAim
Method
Perioperative hyperglycemia has many etiologies including medication, impaired glucose tolerance, uncontrolled diabetes mellitus (DM), or stress, the latter of which is common to post-surgical patients. This acute hyperglycemia may impair the ability of the host to combat infection.1 Our study aims to investigate if post-operative day 1 (POD1) blood glucose level is associated with complications, including periprosthetic joint infection (PJI), after total joint arthroplasty (TJA) and to determine a threshold for glycemic control that surgeons should strive for during a patient's hospital stay. A single-institution retrospective review was conducted on 24,857 primary TJAs performed from 2001–2015. Demographics, Elixhauser comorbidities, laboratory values, complications and readmissions were collected. POD1 morning blood glucose levels were utilized and correlated with PJI, as defined by the Musculoskeletal Infection Society criteria. The Wald test was used to determine the influence of covariates on complication rate. An alpha level of 0.05 was used to determine statistical significance.Aim
Method
It is strongly recommended that tissue and synovial fluid culture samples be obtained during reimplantation performed as part of a two-stage exchange arthroplasty. The incidence of positive cultures during reimplantation and the influence of positive cultures on subsequent outcome are unknown. This aim of this study was to determine the incidence of positive cultures during reimplantation and to investigate the association between positive cultures at reimplantation and the subsequent outcome A retrospective review was conducted on 267 patients that met the Musculoskeletal Infection Society (MSIS) criteria for PJI that completed both stages of two-stage exchange arthroplasty (Table 1). Intraoperative culture results from tissue and/or synovial fluid were obtained. Cultures were positive in 33 cases (12.4%) undergoing reimplantation surgery (Figure 1). Treatment failure was assessed based on the Delphi consensus definition. Logistic regression analysis was performed to assess the predictors of positive culture and risk factors for failure of two-stage exchange arthroplasty. Treatment failure was 45.5% for those with a positive intraoperative culture and 20.9% in those with negative cultures at the time of reimplantation. When controlling for organism virulence, comorbidities, and other confounding factors, treatment failure was higher (odds ratio [OR]: 3.3; 95% confidence interval [CI]: 1.3–4.5) and occurred at an earlier time point (hazard ratio: 2.5; 95% CI: 1.3–4.5) in patients with a positive reimplantation culture. The treatment failure rate was not different between cases with two or more positive cultures (36.4%) and one positive culture (42.8%). Positive intraoperative cultures during reimplantation, regardless of the number of positive samples were independently associated with two times the risk of subsequent infection and earlier treatment failure. Surgeons should be aware that a positive culture at the time of reimplantation independently increases the risk of subsequent failure and needs to be taken seriously. Given the significance of these findings, future studies are needed to evaluate the optimal management of positive cultures during reimplantation surgery.
Perioperative antibiotic prophylaxis remains one of the most important strategies for prevention of periprosthetic joint infection (PJI) with current guideline recommending a first or second generation cephalosporin. Penicillin (PCN) allergy is often reported by patients, which often results in avoidance of administration of cephalosporins due to fear of cross-reactivity. Alternative medications, such as vancomyin, are often used despite reduced antimicrobial coverage. The purpose of this study was to determine if PCN allergic patients who received vancomycin alone prior to elective primary total joint arthroplasty were at increased risk of developing a subsequent PJI. A retrospective review of 7,602 primary total joint arthroplasties (TJAs) performed between 2005 and 2013 in two institutions were identified using a prospective institutional database. Patient reported PCN or cephalosporin allergy was electronically queried from the anesthesia note. Patients who recieved multiple prophylactic antibiotics, or had unavailable perioperative antibiotic information, or those who received medication other than cefazolin and vancomycin were excluded. PJI was determined using a cross-match with an institutional PJI database constructed from International Classification of Diseases (ICD)-9 codes. Logistic regression analysis was then performed to evaluate the risk of subsequent PJI. The rate of PJI was 1.4% (32/2296) in patients with a reported PCN allergy that received vancomycin alone versus 1.1% (59/5306) in non-PCN allergic patients that received cefazolin alone. The multivariate analysis, with the given sample size, did not detect a statistically significant increased risk of PJI when vancomycin was administered alone (adjusted odds ratio: 1.23, 95% CI 0.6–3.1, p=0.35). While there was no significant differences in the organism profile between PJIs in both groups, the rate of PJI caused by resistant organisms was higher in patients who received vancomycin alone (11.9%, 7/59) compared to those who received cefazolin (3.1%, 1/32). While administration of perioperative prophylactic vancomycin alone during elective primary arthroplasty does not seem to result in a higher rate of subsequent PJI, patients who received vancomycin alone and developed a PJI were more likely to develop an infection with an antibiotic resistant organism. Future studies are needed to determine the most appropriate prophylactic antibiotic for patients who undergo elective arthroplasty and report PCN allergy.
Considerable efforts have been invested into identifying risk factors for periprosthetic joint infection (PJI) after total joint arthroplasty (TJA). Preoperative identification of risk factors for developing PJI is imperative for medical optimization and targeted prophylaxis. The purpose of this study was to create a preoperative risk calculator for PJI by assessing a patient's individual risks for developing PJI with resistant organisms and S.aureus. A retrospective review of 27117 patients (43253 TJAs) from 1999 to 2014, including 1035 PJIs, was performed. A total of 41 risk factors including demographics, comorbidities (using the Elixhauser and Charlson Index), and the number of previous TJAs, were evaluated. Multivariate analysis was performed; coefficients of the models were scaled to produce useful integer scoring. Predictive model strength was assessed employing area under the curve (AUC) analysis. Among the 41 assessed variables, the following were significant risk factors in descending order of significance: prior surgeries (p<0.0001), drug abuse (p=0.0003), revision surgery (p<0.0001), human immunodeficiency virus (p=0.0004), coagulopathy (p<0.0001), renal disease (p<0.0001), congestive heart-failure (p<0.0001), psychoses (p=0.0024), rheumatological disease (p<0.0001), knee involvement (p<0.0001), diabetes (p<0.0001), anemia (p<0.0001), males (p<0.0001), liver disease (p=0.0093), smoking (p=0.0268), and high BMI (p<0.0001). Furthermore, presence of heart-valve disease (p=0.0409), metastatic disease (p=0.0006), and pulmonary disease (p=0.0042) increased the resistant organism PJIs. Patients with metastatic disease were also more likely to be infected with S. aureus (p=0.0002). AUCs were 0.83 for any PJI, 0.86 for resistant PJI, and 0.84 for S.aureus PJI models. This large-scale single-institutional study has determined various risk factors for PJI. Some factors are modifiable and need to be addressed before elective arthroplasty. It is imperative that surgeons are aware of these risk factors and implement all possible preventative measures, including targeted prophylaxis, in patients with high-risk of PJI. Continued efforts are needed to find novel and effective solutions to minimize the burden PJI.
Periprosthetic joint infection (PJI) is one of the most devastating complications of total joint arthroplasty (TJA). Only a few studies have investigated PJI's impact on the most worrisome of all endpoints, mortality. The purpose of this study was to perform a large-scale study to determine the rates of PJI associated in-hospital mortality, and compare it to other surgical procedures. The Nationwide Inpatient Sample was queried from 2002 to 2010 to assess the risk of mortality for patients undergoing revision for PJI or aseptic failures. Elixhauser comorbidity index and ICD-9 codes were used to obtain patients’ medical conditions and identify PJI. Multiple logistic-regression analyses were used to determine the associated variables with mortality. In-hospital mortality was compared to the followings: coronary-artery bypass graft, mastectomy, prostatectomy, appendectomy, kidney transplant, carotid surgery, cholecystectomy, and coronary interventional procedures. PJI was associated with an increased risk (odds ratio 2.04) of in-hospital mortality (0.77%) compared to aseptic revisions (0.38%). The in-hospital mortality of revision THAs done for PJI (1.38%, 95%CI, 1.12–1.64%) was comparable to or higher than interventional coronary procedure (1.22%, 95%CI, 1.20–1.24%), cholecystectomy (1.13%, 95%CI, 1.11–1.15%), kidney transplantation (0.70%, 95%CI, 0.61%–0.79%) and carotid surgery (0.89%, 95%CI, 0.86%–0.93%) (Figure 1). The following comorbidities were independent risk factors for in-hospital mortality after TJA: liver disease, metastatic disease, fluid and electrolyte disorders, coagulopathy, weight loss and malnutrition, congestive heart failure, pulmonary circulation disorder, renal failure, and peripheral vascular disease. PJI is associated with a two-fold increase in mortality and have mortality rates comparable to kidney transplantation and carotid surgery. Considering the fact that patients with PJI often require multiple surgical procedures, the rate of actual in-hospital mortality for patients with PJI may be considerably higher. Surgeons should be cognizant of the potentially fatal outcome of PJI and must emphasize the importance of infection control to reduce the risk of mortality.
Preoperative antibiotic prophylaxis remains one of the most important strategies for preventing periprosthetic joint infection (PJI). Current guidelines recommend giving universal antibiotic prophylaxis to all total joint arthroplasty (TJA) patients regardless of their medical conditions or immune status. The aims of this study were to determine if comorbidities influence the organism profile of PJIs and to investigate if the efficacy of the two most frequently used perioperative antibiotics (cefazolin or vancomycin) are affected by patient comorbidities. Using an institutional database, the influence of comorbidities on the organism profile of 1022 PJIs was evaluated. To investigate the influence of perioperative antibiotic monotherapy (cefazolin or vancomycin therapy) on PJI, 8575 primary TJAs were identified and analyzed based on their comorbidities. Patients with multiple perioperative antibiotics, prior septic arthritis, unavailable perioperative antibiotic information, or who underwent aseptic revision were excluded. PJI was determined from ICD-9 codes. While no comorbidities were associated with an increased rate of gram-positive or gram-negative infections, metastatic disease (odds ratio [OR] 7.54, p=0.006), rheumatologic disease (OR 1.63, p=0.046), and chronic pulmonary disease (OR 1.46, p=0.030) demonstrated an increased risk of Staphylococcus aureus PJI. In addition, metastatic disease (OR 5.71, 95% confidence interval [CI] 1.12–26.93, p=0.018), congestive heart failure (OR 2.2, 95% CI 1.16–4.00, p=0.010), chronic pulmonary disease (OR 1.76; 95% CI 1.09–2.78, p=0.015), and diabetes (OR 1.66; 95% CI 1.08–2.52, p=0.019) were associated with PJI from antibiotic resistant organisms. However, there was no difference in the rate of PJI between cefazolin and vancomycin monotherapy when stratified for the aforementioned comorbidities. The present study reveals that comorbidities do not significantly alter the organism profile of high-risk comorbidities and that comorbidities associated with immune deficits do not influence the rate of PJI between two different antibiotics. The results of this study thus support current guidelines, which provide a universal recommendation rather than a protocol that is tailored to a patient's preexisting comorbidities.
Failure of a two-stage exchange arthroplasty for management of periprosthetic joint infection (PJI) poses a major clinical challenge. There is a paucity of information regarding the outcome of further surgical intervention in these patients. Thus, we aim to report the clinical outcomes of subsequent surgical intervention following a failed prior two-stage exchange. Our institutional database was used to identify 60 patients (42 knees and 18 hips) with a failed prior two-stage exchange from infection, who underwent further surgical intervention between 1998 and 2012 and had a minimum of two years follow-up. A retrospective review was performed to extract relevant clinical information, such as mortality, microbiology, and subsequent surgeries. Musculoskeletal Infection Society criteria were used to define PJI, and treatment success was defined using the Delphi criteria as previously reported. Irrigation and debridement (I&D) was performed after a failed two-stage exchange in 61.7% (37/60) patients. The failure rate of I&D in this cohort was 51.3% (19/37). Two patients underwent amputation after I&D due to uncontrolled infection. A total of 40 patients underwent an intended a second two-stage exchange. Reimplantation occurred in only 65% of cases (26/40), and infection was controlled in 61.6% (16/26) of patients. An interim spacer exchange was required in 15% (6/40) of the cases. Of the 14 cases that did not undergo a second stage reimplantation, 5 required amputation, 6 had retained spacers, 1 underwent arthrodesis, and 2 patients died. Further surgical intervention after a failed prior two-stage exchange has poor outcomes. I&D has a high failure rate and many of the patients who are deemed candidates for a second two-stage exchange either do not undergo reimplantation for various reasons or fail after reimplantation. The management of PJI clearly remains imperfect, and there is a dire need for further innovations that may improve the care of these PJI patients.