It is essential to investigate the tribological maturation of tissue-engineered cartilage that is to be used in medical applications. The frictional performances of tissue engineered cartilage have been measured using flat counter surfaces such as stainless steel, glass or ceramics. However, the measured friction performances were significantly inferior to those of natural cartilage, likely because of cartilage adhesion to the counter surface. Tamura et al. reported that a poly (2- methacryloyloxyethyl phosphoryl-choline (MPC)) grafted surface shows low friction coefficient against cartilage without the adhesion to be equivalent to those for natural cartilage-on-cartilage friction. [1] On the other hand, Yamamoto et al. reported that applying a relative sliding movement had a potential to alter the expression of tribological function of regenerated cartilage of chondrocytes. [2] In this paper, the effects of the relative sliding movement on the expression of bone marrow stromal cells (BMSC)s were investigated using the poly(MPC) grafted surface as a counter surface. BMSCs seeded onto fibroin sponge scaffolds were cultured by using the stirring chamber system (Figure 1), which can apply a relative tribological movement to the surface of the specimens. Three culture conditions were applied (dynamic in stirring chamber as frequency as 40 min [D1], as 40 sec [D2] and static in stirring chamber group [S]). The specimens were set into stirrer on a poly(MPC) grafted surface (MPC polymer coated surface, SANSYO). As a counter surface in friction tests, the poly(MPC) grafted surface was prepared by atom transfer radical polymerization, and the regenerated cartilage was prepared by seeding 5×105 cells (BMSCs from rat bone marrow) onto fibroin sponge scaffolds (8 mm diameter and 1 mm thickness) and by 14 days culture.Introduction
Material and methods
Several reports suggest that low-intensity pulsed ultrasound stimulation (LIPUS) facilitates chondrogenesis1). Recently it has been suggested that LIPUS may be transmitted via Integrin: a protein which mediates cellular attachment between cells and extracellular matrix2). In this study, the Arg-Gly-Asp (RGD) amino acid sequence, which is a ligand of Integrin, was induced to the fibroin substrates by either gene transfer or physical mixing, and the variation of chndrocyte response to LIPUS was evaluated. Three kinds of culture dishes coated with three diffrent fibroin aqueous solutions were prepared: 1 wild-type, 2 transgenic and 3 mixed. The wild-type aqueous solution was prepared from INTRODUCTION
EXPERIMENTAL METHODS