It is recommended in the TKA operation to balance the tension of soft tissues to make the rectangular gap in both flexion and extension because significant imbalance may result in eccentric stress on the polyethylene insert. However, no intensive research has been done on the medial and lateral laxity of the normal knee X-ray of 50 normal knees were taken under the varus or valgus stress in both extension and flexion at 80 degrees. The angle of lines on the femoral condyles and tibia plateau was measured. The same methods were also done for the 20 osteoarthritis knees. In extension of the normal knees, the mean angle was 5.06 degrees in varus stress and was 2.46 degrees in valgus stress. In flexion of the normal knees, the mean angle was 5.04 degrees in varus stress and was 1.82 degrees in valgus stress. Therefore, the lateral laxity was significantly larger than the medial laxity in both extension and flexion (p<
0.0001). The lateral laxity was significantly larger also in osteoarthritis knees (p<
0.0001). There are some arguments about the priority to make the perfect rectangular gaps. The methods to measure the tension of soft tissues during the operation are not accurate and does not always reflect the post-operative tensions. Furthermore, the tension during the operation may be different from dynamic phase such as walking and standing. The present study showed that the mediolateral laxity was asymmetrical in the normal knees. This imbalance may be necessary for the medial pivot movement of the normal knee. These results suggest that a slight lateral laxity is acceptable during TKA operation and may be beneficial to achieve the normal kinematics especially for the cruciate retaining prosthesis.
Experimental injuries of cartilage and bone were produced by applying shear force to the articular surfaces of the lateral femoral condyles of six-month-old pigs under various loading conditions. The lesions were divided into two groups, 'open' or 'closed', depending on the presence of a crack on the articular surface. Each was further divided into four types according to the depth of penetrating injury: (1) splitting of uncalcified cartilage; (2) splitting at the subchondral plate; (3) subchondral fracture; and (4) intra-articular fracture. When shear force was applied at high speed but with low energy, the articular cartilage surface was the first to crack. At low speed and low energy, splits occurred in the deeper layers first. As the energy increased, both loading conditions eventually resulted in similar open lesions. Experimentally produced shear injuries are useful models for clinical osteochondral fracture, osteochondritis dissecans, and chondromalacia patellae.