Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 75 - 75
1 May 2016
Kaneuji A Takahashi E Tsuda R Numata Y Matsumoto T Hirosaki K Takano M
Full Access

Introduction

The French paradox regarding cemented femoral components has not been resolved, so we compared the mechanical behavior of a French stem, the CMK stem (Biomet, Warsaw, IN, USA), with a collarless, polished, tapered stem (CPT, Zimmer, Warsaw, IN, USA) using an original biomechanical instrument.

Materials and Methods

Two size-3 CPT stems and two size-302 CMK stems stems were fixed with bone cement into a composite femur soaked in vegetable oil to simulate wet condition. The composite femur was attached to a biomechanical testing instrument after stem implantation, and a 1-Hz dynamic sine wave load (3000 N) was applied to the stems for a total of 1 million cycles. An 8-hour unload period was set after every 16 hours of load. Femur temperature was maintained at 37°C during testing. The femoral canal was prepared for the CPT stems by standard rasping; for the CMK stems, however, the French method was used, in which cancellous bone was removed with a reamer. One CMK stem (CMK-1) was inserted into a femur without collar contact (>2 mm above the calcar), and the other (CMK-2) was inserted into a femur with collar contact. Stem subsidence was measured at the stem shoulder. Compressive force and horizontal cement movement were measured via rods set at the cement–bone interface on the medial, lateral, anterior, and posterior sides of the proximal and distal portions of the composite femurs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 63 - 63
1 May 2016
Takahashi E Kaneuji A Hirosaki K Takano M Tsuda R Matsumoto T
Full Access

Introduction

In cemented total hip arthroplasty (THA), proper cement mantle thickness in the femoral canal is still controversial subject. It is widely accepted that the cement mantle around a femoral stem should be at least 2 mm in thickness. But articles from France reported good long-term result with thin cement mantle. It is so called “The French paradox”. We have already reported that the greater compressive force at the cement-bone interface was seen in collarless polished tapered (CPT, Zimmer, USA) stem with thick cement mantle than that with thin cement mantle. However, the stem with thick cement mantle subsided more than with thin mantle. It may have a possibility to cause an early mechanical failure of cemented THA. We compared to stem and cement subsidence in various cement mantles using tantalum ball into cement in this study.

Methods

A cemented stem model was used for this study with a CPT stem into composite femur.

Three sizes of CPT stems (No. 1, No. 2 and No. 3) and one size composite femur were prepared for this study. We inserted two stems for each size, for a total of six stems. Composite femurs were reamed with a No. 3 rasp, and various size of stem was fixed with cement in each composite femur to make a various thicknesses of cement mantle. Two to three tantalum marker balls were injected into the cement in each femur before cement was hardened. 1-Hz dynamic load applied to the stems for half a-million cycles. Each 16 hours of loading was followed by 8 hours without loading. We used micro-CT before and after loading to measure the movement of the tantalum balls in three dimensions. And we analyzed occupation ratio of stem in the femoral canal by computed reconstructed three dimensional model of bone cement and stem.