header advert
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 46 - 46
1 Feb 2017
Kaneyama R Higashi H Yoshii H Shiratsuchi H Sasho T Suzuki T Matsuno Y Nagamine R Weijia C
Full Access

INTRODUCTION

The extension and flexion gaps are affected by different factors in total knee arthroplasty (TKA). Flexion but not extension gap measurements are influenced by posterior cruciate ligament (PCL) preservation or resection and patella reduction or eversion and thigh weight. If the flexion gap is measured with the thigh placed on the tibia, the measurement results must include the thigh weight; nevertheless, there is no detailed report regarding the thigh weight influence on the flexion gap. In this study, we investigated how thigh weight affected flexion gap measurement.

METHODS

Four knees of whole-body fresh-frozen cadavers (Mongolian race) were investigated. The femur and tibia were dissected with a standard measured resection technique. After the femoral component was set, the flexion gap was measured with a knee balancer. The distraction force of 20, 30, and 40 pounds were loaded at the joint level. For each measurement, the influences of the patella reduced or everted (PR or PE) and the PCL preserved or resected (CR or PS) were estimated. The flexion gap was measured five times in four different categories (CR/PR, CR/PE, PS/PR, PS/PE) and the thigh weight was reduced by weights (0, 0.5, 1.0, 2.0, 3.0 kg) using a string and pulley system. During measurement, the femur was just placed on the tibia, and the knee flexion angle was maintained at 90 degrees with a goniometer. After all measurements, the lower limbs were resected, and the thighs were weighed with a scale. Steel-Dwasstest (non-parametric multiple comparison test) were performed for statistical analysis, and p < 0.05 was considered significant.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 141 - 141
1 Jan 2016
Ryu K Suzuki T Iriuchishima T Kojima K Saito S Ishii T Nagaoka M Tokuhashi Y
Full Access

Objective

Mobile bearing unicompartmental knee arthroplasty (UKA) is an effective and safe treatment for osteoarthritis of the medial compartment. However, mobile-bearing UKA needs accurate ligament balancing of flexion and extension gaps to prevent dislocation of the mobile meniscal bearing. Instability can lead to dislocation of the insert. The phase 3 instruments of the Oxford UKA use a balancing technique for the flexion gap (90° of flexion) and extension gap (20° of flexion), thereby focusing attention on satisfactory soft tissue balancing. With this technique, spacers are used to balance the flexion and extension gap. However, gap kinematics in another flexion angle of mobile-bearing UKA is unclear. We developed UKA tensor for mobile-bearing UKA and we assessed the accurate gap kinematics of UKA.

Materials and Methods

Between 2012 and 2013, The Phase 3 Oxford Partial Knee UKA (Biomet Inc., Warsaw, IN) were carried out in 48 patients (71 knees) for unicompartmental knee osteoarthritis or spontaneous osteonecrosis of the medial compartment. The mean age of patients at surgery was 71.6 years and the mean follow-up period was 1.7 years. The mean preoperative coronal plane alignment was 7.4° in varus. The indications for UKA included disabling knee pain with medial compartment disease; intact ACL and collateral ligaments; preoperative contracture of less than 15°; and preoperative deformity of <15°. Each surgery was performed by using different spacer block with 1-mm increments and the meniscal bearing lift-off tests according to surgical technique. We developed newly tensor for mobile bearing UKA which designed to permit surgeons to measure multiple range of the joint medial compartment/joint component gap, while applying a constant joint distraction force (Figure 1). We assessed the intra-operative joint gap measurements at 0, 20, 60, 90 and 120 of flexion with 100N, 125N and 150N of joint distraction forces.


The Bone & Joint Journal
Vol. 97-B, Issue 11 | Pages 1582 - 1587
1 Nov 2015
Suzuki T Seki A Nakamura T Ikegami H Takayama S Nakamura M Matsumoto M Sato K

This retrospective study was designed to evaluate the outcomes of re-dislocation of the radial head after corrective osteotomy for chronic dislocation. A total of 12 children with a mean age of 11 years (5 to 16), with further dislocation of the radial head after corrective osteotomy of the forearm, were followed for a mean of five years (2 to 10). Re-operations were performed for radial head re-dislocation in six children, while the other six did not undergo re-operation (‘non-re-operation group’). The active range of movement (ROM) of their elbows was evaluated before and after the first operation, and at the most recent follow-up.

In the re-operation group, there were significant decreases in extension, pronation, and supination when comparing the ROM following the corrective osteotomy and following re-operation (p < 0.05).

The children who had not undergone re-operation achieved a better ROM than those who had undergone re-operation.

There was a significant difference in mean pronation (76° vs 0°) between the non- re-operation and the re-operation group (p = 0.002), and a trend towards increases in mean flexion (133° vs 111°), extension (0° vs 23°), and supination (62° vs 29°). We did not find a clear benefit for re-operation in children with a re-dislocation following corrective osteotomy for chronic dislocation of the radial head.

Cite this article: Bone Joint J 2015;97-B:1582–7.


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 789 - 794
1 Jun 2014
Sukegawa K Kuniyoshi K Suzuki T Ogawa Y Okamoto S Shibayama M Kobayashi T Takahashi K

We conducted an anatomical study to determine the best technique for transfer of the anterior interosseous nerve (AIN) for the treatment of proximal ulnar nerve injuries. The AIN, ulnar nerve, and associated branches were dissected in 24 cadaver arms. The number of branches of the AIN and length available for transfer were measured. The nerve was divided just proximal to its termination in pronator quadratus and transferred to the ulnar nerve through the shortest available route. Separation of the deep and superficial branches of the ulnar nerve by blunt dissection alone, was also assessed. The mean number of AIN branches was 4.8 (3 to 8) and the mean length of the nerve available for transfer was 72 mm (41 to 106). The transferred nerve reached the ulnar nerve most distally when placed dorsal to flexor digitorum profundus (FDP). We therefore conclude that the AIN should be passed dorsal to FDP, and that the deep and superficial branches of the ulnar nerve require approximately 30 mm of blunt dissection and 20 mm of sharp dissection from the point of bifurcation to the site of the anastomosis.

The use of this technique for transfer of the AIN should improve the outcome for patients with proximal ulnar nerve injuries.

Cite this article: Bone Joint J 2014;96-B:789–94.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 543 - 543
1 Dec 2013
Suzuki T Ryu K Yamada T Kojima K Saito S Tokuhashi Y
Full Access

Introduction

Accurate soft tissue balancing in knee arthroplasty is essential in order to attain good postoperative clinical results. In mobile-bearing UKA (Oxford Partial Knee unicompartmental knee arthroplasty, Biomet), since determination of the thickness of the spacer block depends on the individual surgeon, it will vary and it will be difficult to attain appropriate knee balancing. The first objective of the present study was to investigate flexion and extension medial unicompartmental knee gap kinematics in conjunction with various joint distraction forces. The second objective of the study was to investigate the accuracy of gap measurement using a spacer block and a tensor device.

Methods

A total of 40 knees in 31 subjects (5 men and 26 women) with a mean age of 71.5 years underwent Oxford UKA for knee osteoarthritis and idiopathic osteonecrosis of the medial compartment. According to instructions of Phase 3 Oxford UKA, spacer block technique was used to make the extension gap equal to the flexion gap. Adequate thickness of the spacer block was determined so that the surgeon could easily insert and remove it with no stress. Following osteotomy, the tensor devise was used to measure the medial compartmental gap between the femoral trial prosthesis and the tibial osteotomy surface (joint component gap) (Fig. 1 and 2). The medial gap was measured at 20° of knee flexion (extension gap) and 90° of knee flexion (flexion gap) with 25N, 50N, 75N, 100N, 125N, 150N of joint distraction force. Corresponding size of bearing was determined for the prosthesis. The interplay gap was calculated by subtracting the thickness of the tibial prosthesis and the thickness of the selected size of bearing from the measured extension and flexion gaps.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_16 | Pages 53 - 53
1 Apr 2013
Suzuki T Matsuura T Kawamura T Kumazawa K Takaso M Soma K
Full Access

Introduction

Over the past decade, the use of negative pressure wound therapy (NPWT) devices has increased and expanded to include a wide variety of patients. However, the safety and efficacy of NPWT over skin in open fractures is still unknown. The purpose of this study was to evaluate the complication rate and outcome of open fractures treated by NPWT over closed wounds or flaps.

Materials and methods

We performed a retrospective review of prospectively collected data of 10 patients, with an average age of 37.9 years old, who underwent NPWT over surgically closed wounds or random pattern cutaneous flaps in open fractures. All wounds were debrided and closed, and NPWT was applied over the skin sequentially in emergency operations.