Anatomically specific fixation devices have become mainstream, yet there are anatomical regions and clinical conditions where no pre-contoured plates are available, such as for glenohumeral arthrodesis. In a case series of 4 glenohumeral arthrodesis patients, a consultant orthopaedic surgeon at GCUH implemented 3D printing technology to create reconstructions of each patient's shoulder girdle to pre-contour arthrodesis plates. Our aim was to quantify the cost-benefit & intra-operative time savings of this technique in glenohumeral arthrodesis. We hypothesized that the use of 3D printing for creating patient specific implants through pre-operative contouring of plates will lead to intra-operative time and cost savings by minimising time spent bending plates during surgery. This study analysed 4 patients who underwent shoulder arthrodesis by a single consultant orthopaedic surgeon at GCUH between 2017-2021. A CT-based life-size model of each patient's shoulder girdle was 3D printed using freely available computer software programs: 3D Slicer, Blender, Mesh Mixer & Cura. Once the patient's 3D model was created, plate benders were used to contour the plate pre-op, which was then sterilised prior to surgery. Arthrodesis was performed according to AO principles of fixation. The time spent pre-bending the plate using the 3D model was calculated to analyse the intra-op time and cost-saving benefits. For the 4 cases, the plate pre-bending times were 45, 40, 45 & 20 minutes (average 38.8 mins). The intra-op correction time to make small adjustments to the plate was 2 min/ case. 3 plates needed minor (3 degree) adjustment to fine-tune scapula spine contouring. 1 plate needed a 5 degree correction to fine-tune hand position. On average, the pre-bending of the plate saved approximately 38.8 mins intra-op/ case. These shorter anaesthetic and operating times equate to approximately $2586 saving/ case, given an estimate of $4000/hour of theatre costs. We conclude that pre-bending plates around 3D-printed life-size models of an individual's shoulder girdle prior to surgery results in approximately 38.8 mins time saving intra-op when used in shoulder arthrodesis. This is a viable and effective technique that will ultimately result in significant operative time and financial savings.
Recent anthropometric studies have suggested that current design of total knee arthroplasty (TKA) does not cater to racial anthropometric differences. The purpose of this study was to investigate the exact sizing and rotational landmarks of the distal femur collected and its gender differences from a large group of healthy Southern Chinese using 3D-CT measurements, and then compare these measurements to the five total knee prostheses conventionally used in China. This study evaluated distal femoral geometry in 85 healthy Southern Chinese, included 39 females (78 knees) and 46 males (92 knees) with a mean age of 33.9 years,a mean height of 164.7 cm and a mean weight of 59.9 kg. The width of the articular surface as projected onto the transepicondylar line(ML), anteroposterior dimension (AP), the dimensions from medial/lateral epicondyle to posterior condylar (MEP/LEP) were measured. A characterization of the aspect ratio (ML/AP) was made for distal femur. The angles between the tangent line of the posterior condylar surfaces, the Whiteside line, the transepicondylar line, and the trochlear line were measured. The sulcus angle and hip center-femoral shaft angle were also measured [Fig. 1]. The data were compared with the five total knee prostheses conventionally used in China. In analyzing the data, best-fit lines were calculated with use of least-squares regression. The dimensions are summarized as the mean and standard deviation. Comparisons of dimensions between males and females were made with use of the two-sample t test. A p value of <0.05 indicated a significant effect.Background
Methods