Purpose: One of the most difficult challenges for orthopaedic surgeons is the management of bone loss resulting in a segmental bone defect. Segmental bone defects are ubiquitously difficult to treat, require multi-phase surgery and have frequent complications. A promising new strategy involves combining tissue engineering techniques with the delivery of biologically active proteins to facilitate bone regeneration. The purpose of this study is twofold:
First, to investigate whether a cylindrical, biodegradable load-bearing scaffold, stabilized with an intramedullary (IM) nail, will facilitate early weight bearing in a critical sized canine defect model.
The second objective is to investigate if rhBMP-2, transported by the biodegradable carrier, will enhance bone formation and healing across a critical sized canine defect.
Method: A critical size defect of 3 cm was created in the canine tibia by osteotomy. A cylindrical, biodegradable scaffold of (poly) propylene fumarate was inserted into the defect and the tibia was stabilized with a locked intramedullary nail. Half of the scaffolds were impregnated with 300μg rhBMP-2 and half remained as controls. The animals were allowed immediate weight bearing post-operatively. X-rays were obtained post-operatively and at weeks 1, 2, 3, 6, 12, 18, and 24. X-rays were assessed for loss of height, integrity of the scaffold, and presence of bridging callous formation.
Results: The animals that received scaffolds treated with rhBMP-2 showed abundant callus formation on X-ray. Partial bridging callus formation in this group was seen at 3 weeks. Complete bridging callus (bridging on 4 cortices) was observed by 6 weeks. These specimens maintained height of the defect and overall length of the tibia. Controls demonstrated minimal callus formation at all time points. By 3 weeks significant loss of defect height was observed. By 6 weeks failure of hardware (breakage of interlocking screws and/or screw loosening) was evident.
Conclusion: This study shows that biodegradable scaffolds, treated with rhBMP-2 and implanted in a critical sized defect facilitate bridging callus formation and healing across the defect. This data indicates that biodegradable scaffolds made of (poly) propylene fumarate are suitable carriers for rhBMP-2 while providing initial structural support for weight bearing.