Ilizarov fixators are reliant on tensioned fine wires for stability. The tension in the wires is generated using specific tensioning devices. Loss of wire tension over time may lead of loss a stability and complications. A series of in vitro experiments were undertaken to explore wire tensioner accuracy, the impact of fixation bolt torque and initial tension on loss of tension in ilizarov constructs under static and dynamic loads. Medical grade materials were applied to a synthetic bone analogue using surgical instruments in all experiments. Bolt torque was fixed at 6, 10 or 14 Nm using a torque limiting wrench. Wire tension was assessed using a strain measurement bridge. Wires were tensioned to 90, 110 and 130kg as measured by a commercial dynamometric tensioner. Static and dynamic testing was undertaken using an instron testing machine. Cyclical loads from 50–750N were applied for 5000 cycles.Introduction
Materials & Methods
During broach preparation and implant insertion of the proximal femur the surgeon may be able to use audible pitch changes to judge broaching adequacy and implant position. The aim of this study was to analyse the sound produced and explain the sound spectra using acoustic physics. A highly sensitive microphone was used to digitally record the sound made during femoral preparation and definitive implant insertion in 9 patients undergoing total hip arthroplasty. The sound data was analysed using a fast Fournier transformation spectrum analyser. The highest 4 peak spectral amplitudes of the first broach, the last strike of the final broach and the definitive implant were recorded. The sound spectra produced by striking the implant introducer in isolation were analysed in a similar manner.Introduction
Methods
High cup abduction angles generate increased contact stresses, higher wear rates and increased revision rates. However, there is no reported study about the influence of cup abduction on stresses under head lateralisation conditions for ceramic-on-Ceramic THA. A finite elements model of a ceramic-on-ceramic THA was developed in order to predict the contact area and the contact pressure, first under an ideal regime and then under lateralised conditions. A 32 mm head diameter with a 30 microns radial clearance was used. The cup was positioned with a 0°anteversion angle and the abduction angle was varied from 45° to 90°. The medial-lateral lateralisation was varied from 0 to 500 microns. A load of 2500 N was applied through the head center.Background
Material and method
Squeaking after total hip replacement has been reported in up to 10% of patients. Some authors proposed that sound emissions from squeaking hips result from resonance of one or other or both of the metal parts and not the bearing surfaces. There is no reported in vitro study about the squeaking frequencies under lubricated regime. The goal of the study was to reproduce the squeaking in vitro under lubricated conditions, and to compare the in vitro frequencies to in vivo frequencies determined in a group of squeaking patients. The frequencies may help determining the responsible part of the noise. Four patients, who underwent THR with a Ceramic-on-Ceramic THR (Trident(r), Stryker(r)) presented a squeaking noise. The noise was recorded and analysed with acoustic software (FMaster(r)). In-vitro 3 alumina ceramic (Biolox Forte Ceramtec(r)) 32 mm diameter (Ceramconcept(r)) components were tested using a PROSIM(r) hip friction simulator. The cup was positioned with a 75° abduction angle in order to achieve edge loading conditions. The backing and the cup liner were cut with a diamond saw, in order to avoid neck-head impingement and dislocation in case of high cup abduction angles (Figure1). The head was articulated ± 10° at 1 Hz with a load of 2.5kN for a duration of 300 cycles. The motion was along the edge. Tests were conducted under lubricated conditions with 25% bovine serum without and with the addition of a 3rd body alumina ceramic particle (200 μm thickness and 2 mm length). Before hand, engineering blue was used in order to analyze the contact area and to determine whether edge loading was achieved.INTRODUCTION
METHODS