The Nerve Root Sedimentation Sign in transverse magnetic resonance imaging has been shown to discriminate well between selected patients with and without lumbar spinal stenosis (LSS), but the performance of this new test, when used in a broad patient population, is not yet known (Barz et al. 2010). We conducted a retrospective study of consecutive patients with suspected LSS from 2004–2006, before the sign had been described, to assess its association with health outcomes. Based on clinical and radiological diagnostics, patients had been treated with decompression surgery or conservative treatment (physical therapy, oral pain medication). Changes in the Oswestry Disability Index (ODI) from baseline to 24 month follow-up were compared between Sedimentation Sign positives and negatives in both treatment arms. Of the 146 included patients (52% female, mean age 59 yrs), 71 underwent surgery. Baseline ODI in this treatment arm was 52%, the sign was positive in 44 patients (mean ODI improvement 25 points) and negative in 27 (ODI improvement 24), with no significant difference between groups. In the 75 patients of the conservative treatment arm, baseline ODI was 44%, the sign was negative in 45 (ODI improvement 17), and positive in 30 (ODI improvement 5). Here a positive sign was associated with a smaller ODI improvement compared with sign negatives (t-test, p=0.003). This study allowed an unbiased clinical validation of the Sedimentation Sign by avoiding it influencing treatment selection. In the conservative treatment arm a positive sign identifies a group of patients who are less likely to benefit. In these cases, surgery might be effective; however, this needs confirmation in prospective studies.
Physician administered McNab criteria “excellent, good, fair and poor” were compared to ODI, VAS back- and leg pain and to the patients answer describing the outcome of the operation with the following options: helped a lot, helped, helped only little, didn’t help and made things worse. Then the concept of minimum clinically important difference (MCID) was applied
In the “good” group 86% (MCID: 51.7%) of patients improved regarding ODI, 81% (MCID: 65,7%) regarding back and 93% (MCID: 89.4%) regarding leg pain. 99% of patients said that the treatment helped a lot, helped or helped only little. 65% (MCID: 40%) of patients in the “fair” group had improved ODIs. Even in this group 88% of patients perceived the treatment as helping a lot, helping or helping only little. Moreover in the “poor” group had 60% (MCID: 40%) of patients improved ODIs, 55% (MCID: 40%) alleviated back and 36% (MCID: 30%) reduced leg pain. But only 30% of patient stated that the treatment helped or helped only little. Spearman correlation coefficients for ODI, VAS back, VAS leg and patient’s verbal statement on overall outcome were 0.42, 0.18, 0.27 and 0.53.
hospital and number of segments of fusion. In fusions of four and more segments a threefold higher risk of dural tears in comparison to fusions of less than four segments should be taken into consideration. A subgroup analysis on the predictor-variable hospital should be performed assessing further covariates. However, this goes beyond the possibilities of documentation in this international spine registry.
The area of the dural sac and neuroforamina was examined with MRI for the narrowest spinal segment. ODI and VAS were used for clinical assessment.
SPINE TANGO is the first International Spine Register. While it has now been fully operational for five years, no results of its collected data have been presented yet. The Swedish Spine Register has already shown that a National Spine Register can generate valid and meaningful data. Here we present data from the first three versions of SPINE TANGO. From 2002 until 2006 about 6000 datasets were submitted by 25 hospitals worldwide. Descriptive analysis was performed for demographic, surgery, and follow-up data comparing all three versions of SPINE TANGO. Over the course of its existence the SPINE TANGO data base showed a rise in median patient age from 52.3 years to 58.6 years and an increasing percentage of degenerative disease as main pathology from 60.1% to 71.4 %. Posterior decompression was the most frequent surgical measure. About one third of all patients had follow-ups. Rehabilitation was arranged more frequently, especially home-based and outpatient rehabilitation. The complication rate was decreasing below 10%. The feasibility of data analysis from the International Spine Register SPINE TANGO could be demonstrated performing descriptive analysis with an evidence level III. In the near future, the meanwhile established SPINE TANGO version 3 with patient based data will make outcome evaluation possible. This will enable us to present more comprehensive analyses of SPINE TANGO and to make the data base even more beneficial for the whole spine community. In parallel to the International Spine Register SPINE TANGO, a National Spine Register in New Zealand could be set up – comparable to NZOA’s National Joint Register.
Patients after ALIF and PLF had an even complication rate (5/39 vs. 26/296, p = 0,41). The types of complications in the ALIF group were less severe (sensory and motoric disturbance vs. implant failure and implant malposition). All five patients needing reintervention belonged to the PLF group. Three quarters of all patients underwent rehabilitation. The proportion of patients with outpatient rehabilitation was higher in the ALIF group (14/39 vs. 50/296 patients, p = 0,05).
Under the auspices of German AO International (DAOI), the German Society of Orthopeadics and Orthopeadic Surgery (DGOOC), the German Society of Trauma Surgery (DGU) and the German Society of Shoulder and Elbow Surgery (DVSE), and in collaboration with the MEM Institute for Evaluative Research in Orthopaedic Surgery, University of Bern, the nationwide online Shoulder Arthroplasty Register was implemented.
Take home message: If ethical aspects allow an RCT, than the RCT is the study set up of choice when a new technique/implant has to be introduced in the market. Once the implant has proved its evidence, the following post market surveillance should be accompanied by registries (introduction of an implant in each country). If an RCT is not indicated (ethical or other contra indications), than registries should be used to prove evidence for an indicated therapy. CCSs are not recommended.