Periprosthetic osteolysis resulting in aseptic loosening is a leading cause for total hip arthroplasty (THA) failure. Individuals vary in their susceptibility to osteolysis, and it is thought that heritable factors contribute to this variation. We conducted two genome-wide association studies to identify genetic risk loci associated with osteolysis and genetic risk loci associated with time to prosthesis failure due to osteolysis. The Norway cohort comprised 2,624 subjects after THA recruited from the Norwegian Arthroplasty Registry, 779 with revision surgery for osteolysis. The UK cohort comprised 890 subjects recruited from hospitals in the north of England, 317 with radiographic evidence or revision surgery for osteolysis. All subjects had received a fully cemented or hybrid THA using small-diameter metal or ceramic-on-conventional polyethylene bearing. Osteolysis susceptibility case-control analyses and quantitative trait analyses for time to prosthesis failure were undertaken after genome-wide genotyping. Finally, a meta-analysis of the discovery datasets was undertaken.Introduction
Patients/Materials & Methods
The adjusted odds ratios for pelvic osteophytes and HO with carriage of the rare FRZB 200 variant were 4.34 (1.01–18.7 p=0.048) and 1.64 (1.05 to 2.54, p=0.028) respectively. The adjusted odds ratio for osteolysis was 0.62 (0.38 to 0.99 p=0.049). There were no bone phenotype associations with the FRZB Arg324Gly variants.
In-vitro evidence suggests that wear debris can alter osteoblast function resulting in decreased bone matrix production and negative remodelling balance. FRZB encodes for Secreted Frizzled-Related Protein 3 which may play a role in bone formation and osteoarthritis. This study was undertaken to investigate whether the recently described single nucleotide polymorphisms (SNPs) at positions [+6] and [+109] of the FRZB gene are associated with osteolysis after THA. Genomic DNA was extracted from 481 North European Caucasians at a mean of 12 years following cemented THA for idiopathic osteoarthritis. The control group consisted of 267 subjects and the osteolysis group 214 subjects. The [+6] and [+109] FRZB SNPs were genotyped using standard techniques. For the FRZB [+6] SNP, the rare T allele was significantly over-represented in control versus the osteolysis group (χ2 test for trend, p=0.02,). The odds ratio for osteolysis associated with carriage of the [+6] T-allele versus the [+6] C-allele was 0.58 (95%CI 0.36 to 0.94), p=0.03. The odds ratio for osteolysis associated with carriage of the [+109] G-allele versus the [+109] C-allele was 0.66 (0.38 to 1.12), p=0.15. A number of covariates have previously been described in this cohort and after adjustment for the effects of these covariates, the odds ratio for osteolysis with carriage of the [+6] T-allele was 0.69 (0.42–1.16). We found that the FRZB [+6] T-allele is less common in subjects with osteolysis after THA versus controls, suggesting that allelic variants of genes associated with bone formation pathways may have a role in modulating the risk of osteolysis. However its loss of significance after correction for other factors suggests an interaction between this allele and other risk factors in osteolysis.