This study aimed to quantify self-reported outcomes and walking gait biomechanics in patients following primary and revision THA. The specific goals of this study were to investigate: (i) if primary and revision THA patients have comparable preoperative outcomes; and (2) if revision THA patients have worse postoperative outcomes than primary THA patients. Forty-three patients undergoing primary THA for osteoarthritis and 23 patients undergoing revision THA were recruited and followed longitudinally for their first 12 postoperative months. Reasons for revision were loosening (73%), dislocation (9%), and infection (18%). Patients completed the Hip dysfunction and Osteoarthritis Outcome Score (HOOS), and underwent gait analysis preoperatively, and at 3 and 12 months postoperatively. A 10 camera motion analysis system (V5 Vantage, Vicon, UK) recorded marker trajectories (100 Hz) during walking at self- selected speeds. A generic lower-body musculoskeletal model (Gait2392) was scaled using principal component analysis [1] and the inverse kinematics tool in Opensim 3.3 was used to compute joint angles for the lower limbs in the sagittal plane. Independent samples t-test were used to compare patient reported outcomes between the primary and revision groups at each timepoint. Statistical parametric mapping was used to compare gait patterns between the two groups at each timepoint. Preoperatively, patients undergoing primary THA reported significantly worse pain (p<0.001), symptoms (p<0.001), function (p<0.001), and quality of life (p=0.004). No differences were observed at 3 and 12 months postoperatively between patients who had received a primary or revision THA. The only observed difference in gait pattern was that patients with a revision THA had reduced hip extension at 3 months, but no differences were observed preoperatively and 12 months. Despite the suggestions in the literature that revision THA is bound to have worse outcomes compared to primary THA, we found no differences in in patient-reported outcomes and gait patterns at 12 months postoperatively. This suggests that it may be possible, in some circumstances, for patients following revision THA to achieve similar outcomes to their peers undergoing primary THA.
The increased incidence of type 2 Diabetes Mellitus is associated with an impaired skeletal structure and a higher prevalence of bone fractures. Sclerostin is a negative regulator of bone formation produced by osteocytes and there is recent evidence that its expression in serum is elevated in diabetic patients compared to control subjects. In this study, we test whether hyperglycemia affects serum and bone sclerostin levels in a rat model of type 2 Diabetes as well as sclerostin production by osteoblasts in culture. We used Zucker diabetic fatty (ZDF) male rats (n=6) that spontaneously develop obesity and frank diabetes around 8–9 weeks of age and Zucker lean rats as controls (n=6) to examine sclerostin expression in serum at 9, 11 and 13 weeks using a specific ELISA. Sclerostin expression in bone tibiae was examined at 12 weeks using immunocytochemistry. Rat osteoblast-like cells UMR-106 were cultured in the presence of increasing concentrations of glucose (5, 11, 22 and 44 mM) during 48 hours and sclerostin mRNA expression and release in the supernatant determined by quantitative PCR and ELISA, respectively. Our results show that serum sclerostin levels are higher in the diabetic rats compared to lean rats at 9 weeks (+ 140%, p<0.01). Our preliminary results using immunocytochemistry for sclerostin did not show any major difference in sclerostin expression in tibiae of diabetic rats compared to lean ones, although we observed many osteocytic empty lacunae in cortical bone from diabetic rats. Glucose dose-dependent stimulated sclerostin mRNA and protein production in mature UMR106 cells while it had no effect on osteocalcin expression. Altogether, our data suggest that sclerostin production by mature osteoblasts is increased by hyperglycemia in vitro and enhanced in serum of diabetic rats. Furthers studies are required to determine whether sclerostin could contribute to the deleterious effect of Diabetes on bone.
Cognitive testing scores do not correlate with physical braking performance. Psychological questioning shows patients are more dependent on driving than a control group. Returning to driving after surgery is a multifaceted issue. There are the medical aspects to consider- whether the patient is medically fit to drive. The term ‘medically fit to drive’ can encompass a range of issues which fall to doctors to solve, including the psychological and mental wellbeing. Groups whose governance involves patients or driving do not issue sound advice for patients or doctors to follow. Investigation of aspects affecting a driver's ability to control their vehicle in a safe manner could go towards providing an evidence base for guidance to be issued in the future.Summary
Introduction
Football player's performance during competitive matches greatly depends on fitness and training. The use of GPS (Global Positioning System) has been revolutionary in the monitoring of player intensity during training. The aim of the study was to investigate the difference in training intensity between defenders, midfielders and forwards and if injury sustained was directly related to the intensity of training. GPS (Catapult Minimax GPS 10Hz) was used to collect training data for a professional British football club playing in the Championship, for the year August 2011/April 2012. Each player wore a GPS unit during each training session and the raw data was logged. The GPS calculates the player load which is a measure of intensity of training. It is a summation of instantaneous change of forward, sideway and upward accelerations. Adjustments are made for match days and injuries according to a defined set of rules. A total player load was obtained for each month and at the end of the season. The different injuries sustained throughout the year were logged for each player. This study shows that there is a difference between the intensity of training in different groups of players. The midfielders trained at the highest intensity and, in this group of professional football players, defenders sustained the most injuries GPS technology allows monitoring of player intensity during training. The data obtained will guide training and fitness coaches model training for the individual group of players. This will prepare players for official matches and eventually may help predict and prevent injuries.
With an ageing population comes an increased prevalence of osteoporosis and associated fracture. Whilst treatment of the condition following such a fracture is partially effective, primary prevention through screening and appropriate follow-up is the ideal. In order to assess a population's risk of fracture, paper questionnaires would traditionally have to be sent, however this is an wasteful and costly. A more efficient method may be to have patients assess their own FRAX score through a modified computer application. To investigate the feasibility of patients self-reporting their FRAX score from the use of a touch screen application.Introduction
Aim
In recent years, there has been an increase in using self- admistrated questionnaires to accurately assess intervention outcomes in hand surgery to determine the quality of healthcare. This study aims to evaluate whether the Manchester Modified Disabilities of the Arm, Shoulder and Hand (M2DASH) questionnaire is a valid, reliable, responsive, and unbiased outcome measure for Carpal Tunnel syndrome compared to the Disability of Arm, Shoulder, and Hand (DASH) questionnaire, Boston questionnaire (BQ), and Nerve Conduction Studies (NCS). 48 patients with CTS confirmed by NCS completed the M2DASH, original DASH, and the BQ, at least twice at different time intervals. The scores obtained from M2DASH were compared and correlated with the DASH, BQ, and NCS to assess validity, reliability, responsiveness, and bias of the questionnaires. Validity analysis for M2DASH showed strong positive correlations with the Original DASH and BQ. No significant correlation was obtained from correlating with NCS. Reliability testing confirmed that the M2DASH is internally consistent and reproducible outcome. Significant results for responsiveness were noted in BQ symptom severity scale only. There was no age, gender, hand dominance, or side affected bias in all three questionnaires.Method
Results
Axial musculoskeletal control (AMC) is a widely used concept and has been shown to be an important factor in physical performance, the pathophysiology of back pain and other MSK conditions. However, there is no agreement on a definition of AMC, nor a validated test for AMC and its application in clinical practice. Our aim was to develop a test for AMC using the Delphi method from a panel of experts with video and analysis of the footage. We found that the most commonly used tests were the maintenance of neutral pelvic position in single leg stance, single leg stance with eyes closed and single leg squat. We aim to further validate our findings by comparing this to surface EMG recordings and centre of gravity measurements in stress situations.
We have investigated whether a system of four inertial measurement units (IMUs) attached to the segments of the lower limbs could provide useful information about the kinematics of limb segment movement in gait in a healthy population. Four IMUs were attached to participants over their clothes. Participants then walked at their self-selected speed for 10 metres along a corridor and back. IMUs were removed, data downloaded on to a computer and ranges of motion were calculated for thigh, calf and knee, in addition to stride duration. 128 participants were recruited aged 18–97. There was little variation in most angle parameters up to age of 80. The relationships between angle and age are non-linear. There was a slight increase in stride duration with age of about 0.1% per year. The study concentrated on active subjects, with no specific co-morbidities that might affect gait. Results obtained may represent what is achievable for any given age, and approximate to changes that occur due to primary ageing. We propose that, after the age 80, peak muscle power declines below a threshold, such that muscular activity required to move a limb approaches the peak power available, and that it is the decline in peak muscle power that ultimately limits gait in active older people. Walking ability is important in maintaining independence as people age. It would be more effective to encourage exercises to maintain normal gait at a much earlier age. Deviations from the normal range could be identified early, and appropriate intervention given.
In the US over half a million people are prescribed crutches each year. More than 750,000 wheelchair users exist in the UK and wheelchair and crutch users commonly develop shoulder pathology. The purpose of this study was to determine the influence of complex topographies on heart rate (HR) and thus energy expenditure, using a wheelchair and differing crutch designs on the exertional body stress. Two Paralympics Athletes from the GB amputee football squad were assessed in a Lomax Active wheelchair and 5 different types of crutches in a randomly allocated order over a course representing everyday complex terrains at the Pedestrian Accessibility and Movement Environment Laboratory (PAMELA), University College London. In addition results were compared over the same course with the athletes using their own personal pair of crutches. The PAMELA course consisted of a mixture of 4% and 2.5% cross falls (transverse) and a simulated road crossing, sprint, slalom and a slow straight.Introduction
Method
Modern forearm crutches have evolved little since their invention last century. We evaluated comfort and user satisfaction of 2 spring-loaded crutches compared with existing crutch designs. 25 healthy subjects (11 male, average age 26.2 years; 14 female, average age 22.7 years) participated. Each used 5 different crutches in a randomly allocated order: standard forearm crutch (ergonomic grip); spring-loaded crutch (soft spring, ergonomic grip); spring-loaded crutch (firm spring, ergonomic grip); standard forearm crutch (normal grip); axillary crutch. Participants completed a purpose built course at the Pedestrian Accessibility and Movement LAboratory, UCL (PAMELA). The course consisted of a mixture of slopes (transverse and longitudinal), sprint, slalom, and a slow straight. All participants completed questionnaires relating to crutch user preference and design features.Introduction
Methods
Knowledge of knee kinetics and kinematics contributes to our understanding of the patho-mechanics of knee pathology and rehabilitation and a mobile system for use in the clinic is desirable. We set out to assess validity and reliability of ambulatory Inertial Motion Unit (IMU) Sensors (Pegasus¯) against an established optoelectronic system (CODA¯). Pegasus¯ uses inertial sensors placed on subjects' thighs and lower leg segments to directly measure orientation of these segments with respect to gravity. CODA¯) models the position of joint centres based on tracked positions of optical markers placed on a subject, providing 3D kinematics of the subject's hips, knees and ankles in all three planes. Intra observer reliability of the Pegasus¯ system was tested on 6 volunteers (4 male; 2 female) with no previous lower limb or knee pathology. IMU's were placed on the long axis of the lateral aspects of both thighs and lower leg segments. A test re-test protocol was used with sagittal data angle collected around a standard circuit. Inter-observer reliability was tested by placement of IMU's by 5 different testers on a single volunteer. To test validity, we collected simultaneous sagittal knee angle data from Pegasus¯ and CODA¯ in two subjects. The presence of IMU's did not compromise positioning of optical markers.Introduction
Methods
The prevention of osteoporotic fractures is a global problem. Key to this strategy is efficient identification of ‘at risk’ patients in order to address the osteoporosis pandemic, including the identification of previously sustained fractures. GP practices are now integrating touch screens as a method of registering patients' attendance for an appointment, so all ages of patients are becoming familiar with this channel of communication. Our touch screen patient administered questionnaire system intends to provide an effective solution. The Virtual Research Integration Collaboration (VRIC) framework supports the integration of basic science and clinical research. It enables the management of research lifecycles by integrating scientific approaches with everyday work practice in a virtual research environment (VRE). ‘Catch Before a Fall’ (CBaF) is a clinical research project using VRIC, using a dedicated interface, co-designed by orthopaedic surgeons and basic scientists, adapted for sensory and IT impaired subjects to capture such information, since approximately 75% of registered over 65 year olds visit their GP each year.Background and objectives
Methods
Sensory and motor manifestations in carpal tunnel syndrome (CTS) are well documented, whereas the associated autonomic dysfunction is often overlooked. The aim of this study is to demonstrate that autonomic dysfunction of the CTS hands can be quantified by measuring skin capacitance. Patients with clinical and electrophysiological signs of idiopathic carpal tunnel syndrome meeting the inclusion criteria were recruited. The patients were also scored based on the Brigham carpal tunnel severity score. Skin capacitance was measured using Corneometer CM825 (C&K Electronic, GmbH). The measurements were taken from the palmar aspect of distal phalanx of the index and little finger of the affected hand. Normal healthy patients with no signs and symptoms of carpal tunnel syndrome were recruited as controls and skin capacitance was measured in a similar fashion as the CTS group.Background & Objectives
Methods