Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_15 | Pages 17 - 17
7 Nov 2023
Rachuene PA Dey R Motchon YD Sivarasu S Stephen R
Full Access

In patients with shoulder arthritis, the ability to accurately determine glenoid morphological alterations affects the outcomes of shoulder arthroplasty surgery significantly. This study was conducted to determine whether there is a correlation between scapular and glenoid morphometric components. Existence of such a correlation may help surgeons accurately estimate glenoid bone loss during pre-operative planning.

The dimensions and geometric relationships of the scapula, scapula apophysis and glenoid were assessed using CT scan images of 37 South African and 40 Chinese cadavers. Various anatomical landmarks were marked on the 77 scapulae and a custom script was developed to perform the measurements. Intra-cohort correlation and inter-cohort differences were statistically analysed using IBM SPSS v28. The condition for statistical significance was p<0.05.

The glenoid width and height were found to be significantly (p<0.05) correlated with superior glenoid to acromion tip distance, scapula height, acromion tip to acromion angle distance, acromion width, scapula width, and coracoid width, in both the cohorts. While anterior glenoid to coracoid tip distance was found to be significantly correlated to glenoid height and width in the South African cohort, it was only significantly correlated to glenoid height in the Chinese cohort. Significant (p<0.05) inter-cohort differences were observed for coracoid height, coracoid width, glenoid width, scapula width, superior glenoid to acromion tip distance, and anterior glenoid to coracoid tip distance.

This study found correlations between the scapula apophyseal and glenoid measurements in the population groups studied. These morphometric correlations can be used to estimate the quantity of bone loss in shoulder arthroplasty patients.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 24 - 24
1 Jan 2017
Dey R Inyang W Mutsvangwa T Charilaou J Roche S Sivarasu S
Full Access

Total Shoulder Arthroplasty (TSA) is a solution to fixing shoulder complications and restoring normal shoulder functionality. Shoulder arthritis is one of the common indicators of TSA. Studies suggest that 15% and 7% of the total Rheumatoid Arthritis (RA) and Osteoarthritis (OA) patients respectively, in sub-Saharan Africa, have degenerated shoulders. These patients are implanted with a Total Shoulder Prosthesis (TSP). There are limited literature available on the morphometric features of African shoulders. Previous studies have indicated that differences in shoulder surface geometry of the European and African populations, exists. This study aims at identifying the structural differences of the humeral articulating surfaces between South African and Swiss data sets.

The South African data set included the Computerised Tomography (CT) scans of cadavers sourced from the University of Cape Town and the Swiss data set included the cadaver CT scans obtained from the SICAS Medical Image Repository. Sixty reconstructed models of humerus were generated from these scans of 30 (bilateral) healthy cadavers (15 South African and 15 Swiss) using Mimics®. The humeral articulating surfaces were separated from the shaft by performing in-silico surgery using SOLIDWORKS®, according to the guidelines provided orthopaedic surgeons. A Matlab code was generated to determine the superior-inferior (S-I) and the anterior-posterior (A-P) circular diameter and the peak points (PPs) of the articulating surfaces. The PPs were defined as the highest point on the articulating surface, which is most likely to be in contact with the glenoid.

The S-I diameter was found to be significantly greater (p<0.01) than the A-P diameter for both the data sets (average difference = 5.02mm). Both the average A-P and S-I diameter for the Swiss data set were significantly larger (p = 0.02 and p = 0.03) than the South African data set by 2.36 mm and 2.70 mm respectively. The PPs were found to lie at an off-set from the origin. in case of the Swiss data set the average PP lie on the superior-posterior (S-P) quadrant and for the South African data set the average PP was found to lie on the anterior-inferior (A-I) quadrant. The A-P variation on the position of PP was highly significant (p = 0.003).

The results obtained in this study sheds light on the observed morphological variations between the South African and Swiss data sets. The observed circular diameter values are similar to the literature. The observed results suggest that the average TSP needed for the Swiss data set would have been larger than the ones needed for the South African data set. PP is a novel feature which has not been studied extensively. The fact that the average Swiss data set PP lie in the S-P quadrant might suggest that these humeral heads are more retroverted and superiorly tilted when compared to the South African data set. These morphometric variations can play a major role in post-TSA kinematics. The future scope of this study is to highlight other morphometric variations, if any, for the gleno-humeral articulating surfaces.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_1 | Pages 23 - 23
1 Jan 2017
Inyang A Dey R Mutsvangwa T Roche S Sivarasu S
Full Access

The morphology of the proximal part of the humerus varies largely. Morphometric features characterizing the three-dimensional geometry of the proximal humerus have revealed a wide difference within individuals. These parameters include head size, radius of curvature, inclination angle, retroversion angle, offsets and neck-shaft angle. Different implant designs have been adapted so as to make provision for these anatomical variations. However, the optimal design criteria are yet to be established. Implant design is one of the main factors determining the success of Total Shoulder Arthroplasty (TSA) since slight modifications in the implant anatomy could have significant biomechanical effects. Therefore, this study investigates the three-dimensional morphometric parameters of the South African proximal humerus which will serve as a basis for designing a new Total Shoulder Prosthesis for the South African population.

Sixteen South African (SA) fresh cadaveric humeri (8 left, 8 right; 8 paired) were used in this study. The data consisted of 6 men and 2 women with ages ranging from 32 to 55 years (43.13 ±8.51). The humeri were scanned using a Computer Tomography (CT) scanner. The Digital Imaging and Communications in Medicine (DICOM) files from the CT data were imported into medical modelling software, MIMICS for reconstruction. The 3D reconstructed model of the humeri as an STL file was used for further processing.

The STL data were generated as a cloud of points in a CAD software, SolidWorks. These were then remodeled by defining the detailed Referential Geometric Entities (RGEs) describing the anatomical characteristics. Anatomical reference points were defined for the anatomical neck plane, the epiphyseal sphere and the metaphyseal cylinder. Also, axes were defined which comprises of the humeral head axis and the metaphyseal axis. Thereafter, the posterior offsets medial offsets and the inclination angles were measured based on the RGEs.

The posterior offset varied from 0.07 mm to 2.87 mm (mean 1.20 mm), the medial offset varied from 4.40 mm to 8.45 mm (mean 6.50 mm) while the inclination angle varied from 114.00º to 133.87º (mean 121.05º)

The outcome of the study showed that the shape and dimensions of the proximal humerus varies distinctively. The articular surface is not a perfect sphere and differs independently with respect to the inclination angles. In addition, variations were noticeable in the medial and lateral offsets.

The morphometric data on the African shoulder is very limited and this study will significantly contribute to the shoulder data repository for the SA population. The morphometric parameters measured in this study will be useful in designing a South African shoulder prosthesis that mimics the native shoulder hence eliminating post-surgical complications.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 109 - 109
1 Jan 2017
Beukes G Patnaik S Sivarasu S
Full Access

The function of the knee joint is to allow for locomotion and is comprised of various bodily structures including the four major ligaments; medial collateral ligament (MCL), lateral collateral ligament (LCL), anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL). The primary function of the ligaments are to provide stability to the joint. The knee is prone to injury as a result of osteoarthritis as well as ligamentous and meniscal lesions. Furthermore, compromised joint integrity due to ligamentous injury may be a result of direct and indirect trauma, illness, occupational hazard as well as lifestyle. A device capable of non-invasively determining the condition of the ligaments in the knee joint would be a useful tool to assist the clinician in making a more informed diagnosis and prognosis of the injury. Furthermore, the device would potentially reduce the probability of a misdiagnosis, timely diagnosis and avoidable surgeries.

The existing Laxmeter prototype (UK IPN: GB2520046) is a Stress Radiography Device currently limited to measuring the laxity of the MCL and LCL at multiple fixed degrees of knee flexion. Laxity refers to the measure of a ligament's elasticity and stiffness i.e. the condition of the ligament, by applying a known load (200N) to various aspects of the proximal tibial and thereby inducing tibial translation. The extent of translation would indicate the condition of the ligament. The Laxmeter does not feature a load applying component as of yet, however, it allows for the patient to be in the most comfortable and ideal position during radiographic laxity measurement testing. The entire structure is radiolucent and attempts to address the limitations of existing laxity measurement devices, which includes: excessive radiation exposure to the radiographic assistant, little consideration for patient ergonomics and restrictions to cruciate or collateral ligament laxity measurements.

The study focusses on further developing and modifying the Laxmeter to allow for: the laxity measurement of all four major ligaments of the knee joint, foldability for improved storage and increased structural integrity. Additionally, a load applicator has been designed as an add-on to the system thereby making the Laxmeter a complete Stress Radiography Device. Various materials including Nylon, Polycarbonate, Ultra High Molecular Weight Polyethylene (UHMWPE) – PE 1000, and Acetal/ POM were tested, using the Low Dose X-ray (Lodox) scanner, to determine their radiolucency. All materials were found to be radiolucent enough for the manufacture of the Laxmeter structure as well as the load applicator in order to identify and measure the translation of the tibia with respect to the stationary femur.

The Laxmeter allows for the measurement of the laxity of the MCL and LCL at multiple fixed degrees of flexion by providing the ideal patient position for testing. The next iteration of the device will present an affordable and complete Stress Radiography Device capable of measuring the laxity of all four major ligaments of the knee joint at multiple fixed degrees of flexion. Future work would include aesthetic considerations as well as an investigation into carbon-fibre-reinforced plastics.