header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 269 - 269
1 Dec 2013
Lowry C Vincent G Traynor A Simpson D Collins S
Full Access

Introduction:

Leg length and offset discrepancy resulting from Total Hip Replacement (THR) is a major cause of concern for the orthopaedic community. The inability to substitute the proximal portion of the native femur with a device that suitably mimics the pre-operative offset and head height can lead to loss of abductor power, instability, lower back pain and the need for orthodoses (1). Contemporary devices are manufactured based on predicate studies (2–4) to cater for the variations within the patient demographic. Stem variants, modular necks and heads are often provided to meet this requirement. The number of components and instruments that manufacturers are prepared to supply however is limited by cost and an unwillingness to introduce unnecessary complexity. This can restrict their ability to achieve the pre-osteoarthritic head centre for all patient morphologies. Corin has developed bone conserving prosthesis (MiniHip™) to better replicate the physiological load distribution in the femur. This study assesses whether the MiniHip™ prosthesis can better match the pre-osteoarthritic head centre for patient demographics when compared to contemporary long stem devices.

Method:

The Dorr classification is a well accepted clinical method for defining femoral endosteal morphology (5). This is often used by the surgeon to select the appropriate type and size of stem for the individual patient. It is accepted that a strong correlation exists between Flare Index (FI), characterising the thinning of cortical walls and development of ‘stove-pipe’ morphology, and age, in particular for females (Table 1) (3). A statistical model of the proximal femur was built from 30 full length femoral scans (Imorphics, UK). Minimum and maximum intramedullary measurements calculated from the statistical model were applied to relationships produced by combining Corins work with that of prior authors (Table 2) (2; 3; 6). This data was then used to generate 2D CAD models into which implants were inserted to compare the head centres achievable with a MiniHip™ device compared to those of a contemporary long stem.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 219 - 219
1 Sep 2012
Wang QQ Wu JJ Unsworth A Simpson D Collins S Jarman-Smith M
Full Access

Introduction

Recent concerns over adverse effects of metal ion release, have led to the development of alternative hip joint replacements. This study reports the performance of new hemispherical MOTIS® (milled pitch-carbon fibre reinforced polyetheretherketone) acetabular cups articulating against Biolox Delta® femoral heads with the aim of producing lower wear and more biologically compatible bearings.

Materials and Methods

The wear performance of 40mm hemispherical MOTIS® cups articulating against Biolox Delta® heads has been investigated. The diametral clearance was 322±15.3nm (mean ± standard deviation). Wear tests were carried out on the Simplified Mark II Durham Hip Wear Simulator to 8 million cycles. New born bovine calf serum was used as the lubricant, diluted to give a protein content of 17g/l. Friction tests were carried out on the unworn joints and worn joints after 7.5 million cycles using lubricants containing protein (bovine serum based carboxymethyl cellulose (CMC) fluids) and without protein (water based CMC fluids). Temperature measured near every hip joint over a continuous wear testing period of 0.5 million cycles was recorded using PICO TC-08 data logger. One K-type thermocouple was placed carefully and consistently in each wear station and two were used to record the ambient room temperature. After stopping the wear test, the data logger continued recording the temperature for a further ten hours to indicate the cooling period. Additionally surface analyses were undertaken before and after wear testing using a non-contacting profilometer and atomic force (AFM) microscope.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 177 - 177
1 Sep 2012
Yeoman M Lowry C Cizinauskas A Vincent G Simpson D Collins S
Full Access

INTRODUCTION

Bone resorption around hip stems, in particular periprosthetic bone loss, is a common observation post-operatively. A number of factors influence the amount of bone loss over time and the mechanical environment following total hip replacement (THR) is important; conventional long stem prostheses have been shown to transfer loads distally, resulting in bone loss of the proximal femur. More conservative, short stems have been recently introduced to attempt to better replicate the physiological load distribution in the femur. The aim of this study was to evaluate the bone mineral density (BMD) change over time, in a femur implanted with either a short or a long stem.

METHODS

Finite element models of two implants, a short (Minihip, Corin, UK) and long (Metafix, Corin, UK) hip stem were used to simulate bone remodeling under a physiological load condition (stair climbing). The magnitudes and directions of the muscle forces and joint reaction force were obtained from Heller et al (2001, 2005). An unimplanted femur was also simulated.

A strain-adaptive remodelling theory (Scannel & Prendergast 2009) was utilised to simulate remodelling in the bone after virtual implantation. COMSOL Multiphysics software was used for the analysis. The strain component of the remodelling stimulus was strain energy density per unit mass. This was calculated in the continuum model from the strain energy density, and apparent density.

Bone mass was adapted using a site-specific approach in an attempt to return the local remodelling stimulus to the equilibrium stimulus level (calculated from the unimplanted femur). The minimal inhibitory signal proposed by Frost (1964), was included in the model and described by a ‘lazy zone’, where no bone remodelling occurred.

The three dimensional geometry of the femur was constructed from computed tomography data of the donor (female, 44 years old, right side). Elemental bone properties were assigned from the Hounsfield Unit values of the CT scans. The elastic modulus of the bone was assumed to be isotropic and was determined using a relationship to the apparent bone density (Frost 1964, Rho 1995). The Poisson's ratio for the bone regions varied between 0.2 and 0.32 depending on the apparent density of the bone (Stulpner 1997).

The period of implantation analysed was 2 years. The muscle forces and joint contact loads applied were ramped linearly from zero to full load over a period of two weeks, representing the estimated post operative rest period of a patient.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 176 - 176
1 Sep 2012
Simpson D Traynor A Collins S
Full Access

INTRODUCTION

Wear induced osteolysis, material property degradation and oxidation remain a concern in cobalt chrome on polyethylene THR. ECIMA is a cold-irradiated, mechanically annealed, vitamin E blended HXLPE developed to maintain mechanical properties, minimise wear and improve long-term oxidation resistance. This study aimed to compare the in-vitro wear rate and mechanical properties of three different acetabular liners; UHMWPE, HXLPE and ECIMA.

METHODS

Twelve liners (Corin, UK) underwent a 3 million cycle (mc) hip simulation. Three UHMWPE (GUR1050, Ø32 mm, γ sterilised), three HXLPE (GUR1020, Ø40 mm, 75 kGy γ, EtO sterilised) and six ECIMA (0.1 wt% vitamin E GUR1020, Ø40 mm, 120 kGy γ, mechanically annealed, EtO sterilised) liners articulated against CoCrMo femoral heads (Corin, UK). Wear testing was performed in accordance with ISO 14242 parts 1 and 2, in calf serum, with a maximum force of 3.0 kN and at a frequency of 1 Hz. Volumetric wear rate was determined gravimetrically.

ASTM D638 type V specimens were machined from ECIMA material for uniaxial tension testing. Ultimate tensile strength (UTS), yield strength and elongation values were measured. These values were compared to mechanical data available for the other material types.

Following completion of the ECIMA wear testing, three of the tested liners were cut in half. One half of each was subject to accelerated ageing in accordance with ASTM F2003-02, while the other half was tested as received. Each liner half was cross-sectioned and a microtome was used to section 200μm thick slices from each cross-section. Oxidation analysis was performed using a Fourier Transform Infra-red technique in accordance with ASTM F2102-01 throughout the thickness of each liner half. Average oxidation indices for each sample were determined.