Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 19 - 19
1 Feb 2020
Simon J Lundberg H Valle CD Wimmer M
Full Access

Introduction

Studies have shown that increased implant conformity in total knee arthroplasty (TKA) has been linked to increased constraint and thus rotational torque at the bone/implant interface. Anterior stabilized (AS) tibial inserts were designed to compensate for excessive AP motion in less-conforming cruciate-retaining (CR) tibial inserts. However, increased constraint may affect implant loading. Therefore, the purpose of this study is to model rotational prosthesis constraint based on implant-specific data and to compare rotational torque and 3D contact forces in implants with CR-lipped and AS tibial inserts during normal gait.

Methods

A previously reported knee joint contact model was updated to include rotational torque due to prosthesis constraint (ASTM F1223(14)). Piecewise multiple linear regression with manually selected cutoff points was used to determine estimates of AP force, ML force, and rotation torque as functions of AP displacement, ML displacement, knee external rotation, respectively, and knee flexion angle from standard data. These functions were used to estimate total moment contribution of the prosthesis from measured knee displacement/rotation angles. Estimates were incorporated into the contact model equilibrium equations as needed by the model. As the model parametrically varies muscle activation coefficients to solve for the range of physiologically possible forces at each time point, the reported force/torque values are the mean across all solutions at each time point. Rotational torque and three dimensional contact forces were calculated for 14 informed-consented subjects, five with AS tibial inserts (1/4 m/f, 67±10 years, 29.2±4.4 BMI, 1/4 right/left) and nine with CR-lipped TKRs (2/7 m/f, 64±6 years, 30.6±5.8 BMI, 4/5 right/left). Rotational torque waveforms were compared using statistical nonparametric mapping; 3D contact forces were compared at mean timing of the flexion/extension moment peaks using independent samples t-tests.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 100 - 100
1 Mar 2017
Wimmer M Simon J Kawecki R Della Valle C
Full Access

Introduction

Preservation of the anterior cruciate ligament (ACL), along with the posterior cruciate ligament, is believed to improve functional outcomes in total knee replacement (TKR). The purpose of this study was to examine gait differences and muscle activation levels between ACL sacrificing (ACL-S) and bicruciate retaining (BCR) TKR subjects during level walking, downhill walking, and stair climbing.

Methods

Ten ACL-S (Vanguard CR) (69±8 yrs, 28.7±4.7 kg/m2) and eleven BCR (Vanguard XP, Zimmer-Biomet) (63±11 yrs, 31.0±7.6 kg/m2) subjects participated in this IRB approved study. Except for the condition of the ACL, both TKR designs were similar. Subjects were tested 8–14 months post-op in a motion analysis lab using a point cluster marker set and surface electrodes applied to the Vastus Medialis Oblique (VMO), Rectus Femoris (RF), Biceps Femoris (BF) and Semitendinosus (ST). 3D motion and force data and electromyography (EMG) data were collected simultaneously. Subjects were instructed to walk at a comfortable walking speed across a walkway, down a 12.5% downhill slope, and up a staircase. Five trials per activity were collected. Knee kinematics and kinetics were analyzed using BioMove (Stanford, Stanford, CA). The EMG dataset underwent full-wave rectification and was smoothed using a 300ms RMS window. Gait cycle was time normalized to 100%; relative voluntary contraction (RVC) was calculated by dividing the average activation during downhill walking by the maximum EMG value during level walking and multiplying by 100%.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 214 - 214
1 Sep 2012
Walscharts S Corten K Bartels W Jonkers I Bellemans J Simon J Vander Sloten J
Full Access

The 3D interplay between femoral component placement on contact stresses and range of motion of hip resurfacing was investigated with a hip model. Pre- and post-operative contours of the bone geometry and the gluteus medius were obtained from grey-value CT-segmentations. The joint contact forces and stresses were simulated for variations in component placement during a normal gait. The effect of component placement on range of motion was determined with a collision model. The contact forces were not increased with optimal component placement due to the compensatory effect of the medialisation of the center of rotation. However, the total range of motion decreased by 33%. Accumulative displacements of the femoral and acetabular center of rotation could increase the contact stresses between 5–24%. Inclining and anteverting the socket further increased the contact stresses between 6–11%. Increased socket inclination and anteversion in combination with shortening of the neck were associated with extremely high contact stresses. The effect of femoral offset restoration on range of motion was significantly higher than the effect of socket positioning. In conclusion, displacement of the femoral center of rotation in the lateral direction is at least as important for failure of hip resurfacings as socket malpositioning.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 34 - 34
1 Sep 2012
Corten K Jonkergouw F Bartels W Van Lenthe H Bellemans J Simon J Vander Sloten J
Full Access

Summary sentence

The bowing of the femur defines a curvature plane to which the proximal and distal femoral anatomic landmarks have a predictable interrelationship. This plane can be a helpful adjunct for computer navigation to define the pre-operative, non-diseased anatomy of the femur and more particularly the rotational alignment of the femoral component in total knee arthroplasty (TKA).

Background and aims

There is very limited knowledge with regards to the sagittal curvature -or bowing- of the femur. It was our aim (1) to determine the most accurate assessment technique to define the femoral bowing, (2) to define the relationships of the curvature plane relative to proximal and distal anatomic landmarks and (3) to assess the position of femoral components of a TKA relative to the femoral bowing.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 175 - 175
1 Sep 2012
Simon J Motmans R Corten K Bellemans J
Full Access

We report the outcome at a minimum of 10 years follow-up for 80 polished tapered stems performed in 53 patients less than 35-years-old with a high risk profile for aseptic loosening. Forty-six prosthesis were inserted for inflammatory hip arthritis and 34 for avascular necrosis. The mean age at surgery was 28 years in the inflammatory arthritis (17–35) and 27 years in the avascular necrosis (15–35) patients. At a mean follow-up of 14.5 years in the inflammatory arthritis group and 14 years in the avascular necrosis group respectively, survivorship of the 80 stems with revision of the femoral component for any reason as an endpoint was 100 % (95 % CI). Re-operation was because of failure of four metal-backed cups, 3 all polyethylene cups and one cementless cup. None of the stems were radiographically loose. All but two femoral components subsided within the cement mantle to a mean of 1.2 mm (0 tot 2.5) at final follow-up. Periarticular osteolysis was noted in 4 femurs in zone 7. This finding was associated with polyethylene wear and was only seen in those hips that needed revision for a metal backed cup loosening. Our findings show that the polished tapered stem has excellent medium-term results when implanted in young patients with high risk factors for aseptic loosening.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 35 - 35
1 Sep 2012
Corten K Simon J
Full Access

The Exeter stem is a polished cemented stem that has been associated with an excellent survivorship. However, this wedge shaped stem has also been associated with a relative higher risk for a peri-periprosthetic fracture due to the wedge-shaped configuration that can lead to a Vancouver type B2 fracture when the stem is being driven downwards inside the femoral canal by a traumatic blast. Traditionally, these fractures should be treated with a revision stem because the stem has become loosened in the fractured cement mantle. We present a case series of 5 cases where our treatment algorithm was to first let the non-displaced fracture to consolidate by 6 weeks of limited weight bearing as tolerated in order to conduct a second stage in-cement revision. This would simplify the revision procedure dramatically. However, all patients are currently pain free and do not require revision surgery although they are being monitored very closely.

We conclude that non-displaced Vancouver type B2 fractures can be approached by a 2 stage treatment algorithm where the initial step is to let the fracture consolidate with limited weight bearing.