Longitudinal Intravital Imaging to Quantify the “Race for the Surface” Between Host Immune Cell and Bacteria for Orthopaedic Implants with To assess Title
Aim
A spine compression fracture is a very common form of fracture in elderly with osteoporosis. Injection of polymethyl methacrylate (PMMA) to fracture sites is a minimally invasive surgical treatment, but PMMA has considerable clinical risks. We develop a novel type thermoplastic injectable bone substitute contains the proprietary composites of synthetic ceramic bone substitute and absorbable thermoplastic polymer. We used thermoplastic biocompatible polymers Polycaproactone (PCL) to encapsulate calcium-based bone substitutes hydroxyapatite (Ca10(PO4)6(OH)2, HA) and tricalcium phosphate (TCP) to form a biodegradable injectable bone composite material. The space occupation ration PCL:HA/TCP is 1:9. After heating process, it can be injected to fracture site by specific instrument and then self-setting to immediate reinforce the vertebral body. The thermoplastic injection bone substitute can obtain good injection properties after being heated by a heater at 90˚C for three minutes, and has good anti-washout property when injected into normal saline at 37˚C. After three minutes, solidification is achieved. Mechanical properties were assessed using the material compression test system and the mechanical support close to the vertebral spongy bone. In vitro cytotoxicity MTT assay (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed and no cell cytotoxicity was observed. In vivo study with three New Zealand rabbits was performed, well bone growth into bone substitute was observed and can maintain good mechanical support after three months implantation. The novel type thermoplastic injection bone substitute can achieve (a) adequate injectability and viscosity without the risk of cement leakage; (b) adequate mechanical strength for immediate reinforcement and prevent adjacent fracture; (c) adequate porosity for new bone ingrowth; (e) biodegradability. It could be developed as a new option for treating vertebral compression fractures.
Posterior lumbar interbody fusion (PLIF) is indicated
for many patients with pain and/or instability of the lumbar spine.
We performed 36 PLIF procedures using the patient’s lumbar spinous
process and laminae, which were inserted as a bone graft between
two vertebral bodies without using a cage. The mean lumbar lordosis
and mean disc height to vertebral body ratio were restored and preserved
after surgery. There were no serious complications. These results suggest that this procedure is safe and effective.