Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 105 - 105
1 Jan 2016
Onishi Y Ishimaru M Hino K Shiraishi Y Miura H
Full Access

Introduction

MERA Quest Knee System (Quest Knee) is a posterior cruciate ligament–retaining prosthesis considering the anatomical features and lifestyles of the Japanese. As for the anatomical features, we reduced the size of prosthesis and set a smaller interval of sizes because Japanese knees are smaller and flatter than those of Caucasians. As for the lifestyles, we evaluated in vivo patellar tracking during deep knee flexion and the condylar geometry in the axial plane of magnetic resonance imaging. It was found that the patella sank deeply into the intercondylar notch and that the articular surface of the lateral condyle began to curve steeply. We adopted this shape and engraved the lateral condyle deep to reduce the pressure of the patellofemoral joint and to get better range of motion (ROM). For the contact pressure rise in the femorotibial joint by engraving the lateral condyle, the insert was suited to the shape of the femoral component. Furthermore, we increased the thickness of the posterior flange of the femoral component and changed the posterior radius of curvature gradually, and this shape allowed the flexion of 155°. We have used Quest Knee for clinical applications from October 2009. We studied the short-term results of Quest Knee.

Methods

Between June 2010 and July 2013, the same senior surgeon performed 59 consecutive primary operations with Quest Knee. Forty patients (44 knees) were women, and 14 patients (15 knees) were men. The mean patient age was 72.5 years (range, 59–89 years). All were osteoarthritis knees. Coronal deformity was varus in 58 knees and valgus in one knee. All operations were performed with a measured resection technique, and all patellae were resurfaced. Clinical evaluations were assessed using the Japanese Orthopaedic Association knee rating score (JOA score), and clinical ROM and standing femorotibial angle (FTA) were measured. Additionally, three-dimensional motion analysis of the patellar component during squatting was performed by the image matching method with image correlations.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 355 - 355
1 Dec 2013
Ishimaru M Shiraishi Y Hino K Onishi Y Miura H
Full Access

Introduction:

The widespread use of TKA promoted studies on kinematics after TKA, particularly of the femorotibial joint. Knee joint kinematics after TKA, including the range of motion (ROM) and the physical performance, are also influenced by the biomechanical properties of the patella. Surgeons sometimes report complications after TKA involvinganterior knee pain, patellofemoral impingement and instability. However, only few studies have focused specially on the patella. Because the patella bone is small and overlapped with the femoral component on scan images. In addition, the patellar component in TKA is made of x-ray–permeable ultra-high molecular weight polyethylene. It is impossible to radiographically determine the external contour of the patellar component precisely. No methods have been established to date to track the dynamic in vivo trajectory of the patella component. In this study, we analyzed the in vivo three-dimensional kinematics of the patellar component in TKA by applying our image matching method with image correlations.

Methods:

A computed tomography (CT) and an x-ray flat panel detector system (FPD) were used. FPD-derived post-TKA x-ray images of the residual patellar bone were matched by computer simulation with the virtual simulation images created using pre-TKA CT data. For the anatomic location of the patellar component, the positions of the holes drilled for the patellar component pegs were used. This study included three patients with a mean age of 68 years (three females with right knee replacement) who had undergone TKA with the Quest Knee System and achieved a mean passive ROM of 0 to ≥ 130° after 6 or more month post-TKA. We investigated three-dimensional movements of the patellar component in six degrees of freedom (6 DOF) during squatting and kneeling. Furthermore, we simulated the three-dimensional movement of the patellar component, and we estimated and visualized the contact points between the patellar and femoral components on a three-dimensional model.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 447 - 447
1 Dec 2013
Nakanishi Y Hidehiko H Miura H Shiraishi Y Shimoto T Umeno T Mizuta H Iwamoto Y
Full Access

An ultra-high molecular weight polyethylene (UHMWPE) is widely used as bearing material in artificial joints, however, UHMWPE wear particles are considered to be a major factor in long-term osteolysis and loosening of implants. The wear particles activate macrophages, which release cytokines, stimulating osteoclasts, which results in bone resorption. The biological activity of the wear debris is dependent on the volume and size of the particles produced. Many researchers reported that the volume and size of particles were critical factors in macrophage activation, which particles in the size range of 0.1–1 mm being the most biological active.

To minimize the amount of wear of UHMWPE and to enlarge the size of UHMWPE wear particle, a nano-level surface textured on Co-Cr-Mo alloy as a counterface material was invented (Figure 1). Although the generally-used surface for a conventional artificial joint has 10 nm roughness (G-1), the nano-level surface has a superfine surface of 1 nm with groove and dimples against the bearing area. The existence probability of groove or dimples, and their surface waviness were adjusted (P-1, 2, 3, 4 and W-1, 2).

Pin-on-disc wear tester capable of multidirectional motions was used to verify that the nano-textured surface is the most appropriate for artificial joint. UHMWPE pin with an average molecular weight of 6.0 million was placed in contact with the disc and the contact pressure was 6.0 MPa. The disc and pin were lubricated by a water-based liquid containing the principal constituents of natural synovial fluid. Sliding speed of 12.12 mm/s had been applied for total sliding distance of 15 km.

The nano-textured surfaces reduced the amount of UHMWPE wear, this would ensure the long-term durability of artificial joint (Figure 2). The wear particles isolated from lubricating liquid were divided broadly into two categories; one is “simple type” and the other is “complicated type”. The lengths in a longitudinal direction (Ll) and its orthogonal direction (Ls) for each particles (>150) were measured, and the each aspect ratio (= Ll/Ls) was calculated. No significant difference was found in the ratio between simple type and complicated type, and in the distributions of aspect ratios. However, the distributions of Ll, which means the size of UHMWPE wear particle, were dramatically changed by using the nano-textured surface (Figure 3). These results suggest that the nano-textured surface does not change the morphological aspect of UHMWPE particle but enlarges the size of UHMWPE particle.

Cells (RAW264.7, blood, Mouse) were cultured with the particles in supplemented Dulbecco's modified Eagle's medium for 24 h in an atmosphere of 5% CO2 in air at 37 degrees C, and the quantitative PCR was performed for genetic expression of IL-6. The wear debris generated on the nano-textured surface inhibited the genetic expression of IL-6, which does not induce the tissue reaction and joint loosening.