Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 45 - 45
1 Mar 2017
Myers C Laz P Shelburne K Rullkoetter P
Full Access

Introduction

Alignment of the acetabular cup and femoral components directly affects hip joint loading and potential for impingement and dislocation following total hip arthroplasty (THA) [1]. Changes to the lines of action and moment generating capabilities of the muscles as a result of component position may influence overall patient function. The objectives of this study were to assess the effect of component placement on hip joint contact forces (JCFs) and muscle forces during a high demand step down task and to identify important alignment parameters using a probabilistic approach.

Methods

Three patients following THA (2 M: 28.3±2.8 BMI; 1 F: 25.7 BMI) performed lower extremity maximum isometric strength tests and a step down task as part of a larger IRB-approved study. Patient-specific musculoskeletal models were created by scaling a model with detailed hip musculature [2] to patient segment dimensions and mass. For each model, muscle maximum isometric strengths were optimized to minimize differences between model-predicted and measured preoperative maximum isometric joint torques at the hip and knee.

Baseline simulations used patient-specific models with corresponding measured kinematics and ground reaction forces to predict hip JCFs and muscle forces using static optimization. To assess the combined effects of stem and cup position and orientation, a 1000 trial Monte Carlo simulation was performed with input variability in each degree of freedom based on the ±1 SD range in component placement relative to native geometry reported by Tsai et al. [3] (Figure 1). Maximum confidence bounds (1–99%) were predicted for the hip JCF magnitude and muscle forces for three prime muscles involved in the task (gluteus medius, gluteus minimus and psoas). HJC confidence bounds were compared to Orthoload measurements from telemetric implants from 6 patients performing the step down task. Sensitivity of hip JCF and muscle force outputs was quantified by Pearson Product-Moment correlation between the input parameter and the value of each output averaged across four points in the cycle.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 58 - 58
1 Feb 2017
Kefala V Ali A Mannen E Shelburne K
Full Access

Introduction

Accurate measurement of knee motion is necessary for assessment of natural joint function and in the diagnosis of pathology. In particular, precise knowledge of natural knee mechanics provides useful metrics for comparison to knee function following total knee arthroplasty (TKA). Reported measurements of natural knee kinematics during activities of daily living are rare, and often do not include both tibiofemoral (TF) and patellofemoral (PF) articulations. What's more, most studies record knee motion of younger subjects that are not necessarily representative of the age range associated with degenerative changes and TKA. The purpose of this study was to measure TF and PF kinematics of healthy older adults as they performed activities of daily living, including tasks considered more demanding for the knee [1].

Methods

High speed stereo radiography (HSSR) was used to measure the kinematics of the PF and TF joints. HSSR utilizes two views of the knee to capture 3D sub-mm measurements accurate to within ±0.15 mm in translation and ±0.41° in rotation [2]. Eight healthy subjects (4M/4F, 64.4±8.2 years, BMI: 27.6±4.8 kg/m2) performed six activities of daily living: seated knee extension, lunge, chair rise, gait, pivot and step down (Figure 1). The 3D geometry of the femur, tibia, and patella of each subject was reconstructed from CT and used to track bone motions using Autoscoper (Brown University, Providence RI). Motion of the tibia and patella were reported relative to a coordinate system centered in the posterior condyles of the femur [3]. Average range of motion (ROM) for each DOF was calculated as the difference between the maximum and the minimum value and averaged across the subjects for each activity.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 10 - 10
1 Feb 2017
Ali A Mannen E Smoger L Haas B Laz P Rullkoetter P Shelburne K
Full Access

Introduction

Patellar resurfacing affects patellofemoral (PF) kinematics, contact mechanics, and loading on the patellar bone. Patients with total knee arthroplasty (TKA) often exhibit adaptations in movement patterns that may be linked to quadriceps deficiency and the mechanics of the reconstructed knee [1]. Previous comparisons of PF kinematics between dome and anatomic resurfacing have revealed differences in patellar sagittal plane flexion [2], but further investigation of PF joint mechanics is required to understand how these differences influence performance. The purpose of this study was to compare PF mechanics between medialized dome and medialized anatomic implants using subject-specific computational models.

Methods

A high-speed stereo radiography (HSSR) system was used to capture 3D sub-mm measurement of bone and implant motion [3]. HSSR images were collected for 10 TKA patients with Attune® (DePuy Synthes, Warsaw, IN) posterior-stabilized, rotating-platform components, 5 with medialized dome and 5 with medialized anatomic patellar components (3M/7F, 62.5±6.6 years, 2.2±0.6 years post-surgery, BMI: 26.2±3.5 kg/m2), performing two activities of daily living: knee extension and lunge (Figure 1). Relative motions were tracked using Autoscoper (Brown University, Providence, RI) for implant geometries obtained from the manufacturer. A statistical shape model was used to predict the patella and track motions [4].

Subject-specific finite element models of the experiment were developed for all subjects and activities [5]. The model included implant components, patella, quadriceps, patellar tendon, and medial and lateral PF ligaments (Figure 2a). While tibiofemoral kinematics were prescribed based on experimental data, the PF joint was unconstrained. A constant 1000N quadriceps load was distributed among four muscle groups. Soft tissue attachments and pre-strain in PF ligaments were calibrated to match experimental kinematics [5]. Model outputs included PF kinematics, patellar and contact force ratios, patellar tendon angle, and moment arm.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 29 - 29
1 May 2016
Banks S Kefala V Cyr A Shelburne K Rullkoetter P
Full Access

“How does the knee move?” is a question of fundamental importance for treatment of knee injuries and knee replacement design. Unfortunately, we lack unambiguous and comprehensive knee function data sets and/or consensus on how healthy knees move. One can just as easily find reports stating the natural knee has a center of axial rotation in the medial compartment of the knee as in the lateral. This is due to technical and practical issues: It is extremely difficult to accurately measure knee motions during ambulatory activities and, when that can be done, very few studies have examined a range of weightbearing activities in the same study cohort. The purpose of this study is to report knee kinematics in a cohort of healthy older subjects whose motions were examined during four different movements, three of them weightbearing ambulation, using a high-speed stereoradiographic system.

Six healthy consenting subjects (age = 61 ± 5 years, body mass = 75 ± 8 kg, BMI = 27 ± 4) were observed using a high-speed stereoradiographic system while completing four tasks. Subjects were instructed to perform an unloaded, seated knee extension from high flexion to full extension; to walk at a self selected pace; to step down from a 7 inch platform; and to walk and perform a 90° direction change (pivoting). Stereoradiographic images (1080 × 1080 pixels) were acquired at 100 images/second using 40cm image intensifiers and pulsed x-ray exposures. The three-dimensional knee kinematics were measured using the XROMM software suite (xromm.org, Brown University). Post-processing of the kinematics was performed in custom Matlab programs, and included fitting spheres to the posterior condylar surfaces of each knee, and then tracking the motions of the sphere centers relative to a fixed tibial reference frame (Figure 1). The motions of these flexion-facet centers, were used to determine an average center of axial rotation (CoR) over each activity as previously reported by Banks and Hodge.

Average CoRs for all four activities were in the posterior-medial quadrant of the knee, with the CoR for open-chain knee extension being the most medial and gait the most lateral (Table 1, Figure 2). One-way ANOVA showed average CoRs are different (p « 0.001). There was considerable variation in individual CoRs, for example, with two knees showing lateral CoRs for gait and the remaining knees having medial CoRs.

It should not be surprising that natural knee motions vary with dynamic activity, yet knee kinematics often are presented as being one stereotypic, monolithic pattern of motion. Our data show that the same healthy subjects performing different dynamic activities manifest different knee motions, with open-chain knee extension having the most medial CoR and gait the most lateral. This finding is consistent with previous reports comparing stair climbing and gait in knees with various implant designs. Additional experimental data and, ultimately, validated numerical simulations should facilitate an increasingly accurate process for designing improved treatments for diseased and damaged knees.