Reconstruction of the anterior cruciate ligament (ACL) allows to restore stability of the knee, in order to facilitate the return to activity (RTA). Although it is understood that the tendon autograft undergoes a ligamentous transformation postoperatively, knowledge about longitudinal microstructural differences in tissue integrity between types of tendon autografts (ie, hamstring vs. patella) remains limited. Diffusion tensor imaging (DTI) has emerged as an objective biomarker to characterize the ligamentization process of the tendon autograft following surgical reconstruction. One major limitation to its use is the need for a pre-injury baseline MRI to compare recovery of the graft, and inform RTA. Here, we explore the relationship for DTI biomarkers (fractional anisotropy, FA) between knees bilaterally, in healthy participants, with the hypothesis that agreement within a patient's knees may support the use of the contralateral knee as a reference to monitor recovery of the tendon autograft, and inform RTA. Fifteen participants with no previous history of knee injuries were enrolled in this study (age, 26.7 +/− 4.4 years; M/F, 7/8). All images were acquired on a 3T Prisma Siemens scanner using a secured flexible 18-channel coil wrapped around the knee. Both knees were scanned. A 3D anatomical Double Echo Steady State (DESS) sequence was acquired on which regions of interest (ROI) were placed consistent with the footprints of the ACL (femur, posteromedial corner on medial aspect of lateral condyle; tibia, anteromedial to intercondylar eminence). Diffusion images were acquired using fat saturation based on optimized parameters in-house. All diffusion images were pre-processed using the FMRIB FSL toolbox. The footprint ROIs of the ACL were then used to reconstruct the ligament in each patient with fiber-based probabilistic tractography (FBPT), providing a semi-automated approach for segmentation. Average FA was computed for each subject, in both knees, and then correlated against one another using a Pearson correlation to assess the degree of similarity between the ACLs. A total of 30 datasets were collected for this study (1/knee/participant; N=15). The group averaged FA (+/− standard deviation) for the FBPT segmented ACLs were found to equal 0.1683 +/− 0.0235 (dominant leg) and 0.1666 +/− 0.0225 (non-dominant leg). When comparing both knees within subjects, reliable agreement was found for the FBPT-derived ACL with a linear correlation coefficient (rho) equal to 0.87 (P < 0 .001). We sought to assess the degree of concordance in FA between the knees of healthy participants with hopes to provide a method for using the contralateral “healthy” knee in the comparison of autograft-dependent longitudinal changes in microstructural integrity, following ACL reconstruction. Our results suggest that good agreement in anisotropy can be achieved between the non-dominant and dominant knees using DTI and the FBPT segmentation method. Contralateral anisotropy of the ACL, assuming no previous injuries, may be used as a quantitative reference biomarker for monitoring the recovery of the tendon autograft following surgical reconstruction, and gather further insight as to potential differences between chosen autografts. Clinically, this may also serve as an index to supplement decision-making with respect to RTA, and reduce rates of re-injuries.
The aim of the Scaphoid Magnetic Resonance Imaging in Trauma (SMaRT) trial was to evaluate the clinical and cost implications of using immediate MRI in the acute management of patients with a suspected fracture of the scaphoid with negative radiographs. Patients who presented to the emergency department (ED) with a suspected fracture of the scaphoid and negative radiographs were randomized to a control group, who did not undergo further imaging in the ED, or an intervention group, who had an MRI of the wrist as an additional test during the initial ED attendance. Most participants were male (52% control, 61% intervention), with a mean age of 36.2 years (18 to 73) in the control group and 38.2 years (20 to 71) in the intervention group. The primary outcome was total cost impact at three months post-recruitment. Secondary outcomes included total costs at six months, the assessment of clinical findings, diagnostic accuracy, and the participants’ self-reported level of satisfaction. Differences in cost were estimated using generalized linear models with gamma errors.Aims
Patients and Methods
General Attitude of Orthopaedic Surgeon Towards IPV, Attitude of Orthopaedic Surgeon Towards Victims and Batterers and Clinical Relevance of IPV in Orthopaedic Surgery. Up to 3 follow up mailings were performed to enhance response rates.
We describe the histology of a specimen taken from an amputated leg seven months after a 15 cm bone gap in the tibia had been closed by bone transport. Lengthening appeared to have occurred by repeated minor trauma to the bone, with the fractured trabeculae in sufficiently close contact for the repair process to proceed. Osteogenesis did not occur through a cartilage phase, but the fracture gaps were bridged by collagen fibres, around which new bone formed. Microfractures had repaired by primary healing with woven bone and with no microcallus. Small regions of bone were necrotic. Resorption of the necrotic bone and remodelling of the immature bundle and woven bone were still at an early stage, suggesting that complete remodelling in man may take years rather than months.
The incidence of refracture following the removal of screws and plates from the diaphyses of 115 forearm bones in 80 patients has been studied. Refracture occurred in four adult patients as a result of minimal trauma, in two patients at the original fracture site after premature plate removal, at the site of a countersunk interfragmentary screw in one and at the original fracture site in another who had required three operative procedures to achieve 'union'. It is suggested that refracture could have been avoided in at least two of these patients. If the 3.5 mm plating system has been used, the incidence of refracture should be minimal.
Bone weakness leading to refracture is a recognised complication of the removal of rigid fixation plates. We have used partially demineralised rabbit tibiae to simulate atrophic changes and to determine whether weakness is due to atrophy or to residual screw holes. Partial demineralisation and a screw hole each reduced maximum bending moment. However, energy absorbing capacity was little affected by demineralisation, but was reduced to 50% by a single drill hole. Residual screw holes are a considerably more important cause of bone weakness after plate removal than is cortical atrophy.
We used single-photon absorptiometry to assess the forearm bones after the removal of internal fixation plates in 14 patients. We found convincing evidence of cortical atrophy in only one patient, in whom the plates had been removed prematurely after only 16 months. It is suggested that such plates should be retained for at least 21 months, to allow bone density to return to its prefracture level. The recommendations of the AO/ASIF group are supported.
We compared, under laboratory conditions, the resistance to cutting out of the AO dynamic hip screw and the Pugh sliding nail. The mean load at cut out, adjusted for bone strength, was 70% greater for the Pugh sliding nail. The reasons for this difference are discussed.