Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 49 - 49
1 Nov 2016
Sermer C Kandel R Hurtig M Anderson J Theodoropoulos J
Full Access

Osteoarthritis (OA) is a debilitating disease characterised by degradation of articular cartilage and subchondral bone remodeling. Current therapies for early or midstage disease do not regenerate articular cartilage, or fail to integrate the repair tissue with host tissue, and therefore there is great interest in developing biological approaches to cartilage repair. We have shown previously that platelet-rich plasma (PRP) can enhance cartilage tissue formation. PRP is obtained from a patient's own blood, and is an autologous source of many growth factors and other molecules which may aid in healing. This raised the question as to whether PRP could enhance cartilage integration. We hypothesise that PRP will enhance integration of bioengineered cartilage with native cartilage.

Chondrocytes were isolated from bovine metacarpal-phalangeal joints, seeded on a porous bone substitute (calcium polyphosphate) and grown in the presence of FBS to form an in vitro model of osteochondral-like tissue. After 7 days, the biphasic constructs were soaked in PRP for 30 minutes prior to implantation into the core of a ring-shaped biphasic explant of native bovine cartilage and bone. Controls were not soaked in PRP. The resulting implant-explant construct was cultured in a stirring bioreactor in serum free conditions for 2 weeks. The integration zone was visualised histologically. A push-out test was performed to assess the strength of integration. Matrix accumulation at the zone of integration was assessed biochemically and the gene expression of the cells in this region was assessed by RT-PCR. Significance (p<0.05) was assessed by a student's t-test or one-way ANOVA with tukey's post hoc.

PRP soaked bioengineered implants, integrated with the host tissue in 73% of samples, whereas control bioengineered implants only integrated in 19% of samples based on macroscopic evaluation (p<0.05). The integration strength, as determined by the normalised maximum force to failure, was significantly increased in the PRP soaked implant group compared to controls (219 +/− 35.4 kPa and 72.0 +/− 28.5 kPa, respectively, p<0.05). This correlated with an increase in glycosaminoglycan and collagen accumulation in the region of integration in the PRP treated implant group, compared to untreated controls after 2 weeks (p<0.05). Immunohistochemical studies revealed that the integration zone was rich in collagen type II and aggrecan. The cells at the zone of integration in the PRP soaked group had a 2.5 fold increase in aggrecan gene expression (p=0.05) and a 3.5 fold increase in matrix metalloproteinase 13 expression (p<0.05) compared to controls.

PRP soaked bio-engineered cartilage implants showed improved integration with native cartilage compared to non-treated implants, perhaps due to the increased matrix accumulation and remodeling at the interface. Further evaluation is required to determine if PRP improves integration in vivo.