Within total hip replacement, articulation of the femoral head near the rim of the acetabular liner creates undesirable conditions leading to a propensity for dislocation[1], increased contact stresses[2], increased load and torque imparted on the acetabular component[3], and increased wear[4]. Propensity for rim loading is affected by prosthesis placement, as well as the kinematics and loading of the patient. The present study investigates these effects. CT scans from an average-sized patientwere segmented for the hemipelvis and femur of interest. DePuy Synthes implant models were aligned in a neutral position in Hypermesh. The acetabular liner was assigned deformable solid material properties, and the remainder of the model was assigned rigid properties. Joint reaction forces and kinematics of hip flexion were taken from the public Orthoload database to represent ADLs [5]: Active flexion lying on a table, gait, bending to lift and move a load, and sit-stand. The pelvis was fully constrained, while three-degree-of-freedom (3-DOF) forces were applied to the femur. Hip flexion was kinematically-prescribed while internal-external (I-E) and adduction-abduction (Ad-Ab) DOFs were constrained. Angles of acetabular implant positioning were based on published data by Rathod [6]. Femoral implant position was chosen based on cadaveric in vitro DePuy Synthes measurements of variation in femoral prosthesis position reported previously [7]. Acetabular and Femoral alignment angles were represented for nominal position, as well as positioning + 1σ and + 2σ from the mean in both anteversion and inclination for acetabular components, and both Varus/Valgus and Flexion (angle in sagittal plane) for the femoral component. The analyses were automated within Matlab to execute 68 finite element analyses in Abaqus Explicit and structured in a DOE style analysis with Cup inclination, Cup version, Stem Flexion, and Stem Varus/Valgus, and Activity as variables of interest (64 runs + 4 centerpoints = 68 analyses). From a previous study it was known that acetabular component inclination had the greatest effect on contact pressure location [7], so all data were analyzed relative to inclination, allowing other positioning variables to be represented as variation per inclination position. Results are presented as a percentage, with 0% being pole loading and 100% being rim loading, to normalize for head diameter.INTRODUCTION
METHODS