header advert
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 79 - 79
1 Dec 2021
Souche A Kolenda C Schuch R Ferry T Laurent F Josse J
Full Access

Aim

Staphylococcus epidermidis (S. epidermidis) is one of the main pathogens responsible for bone and joint infections especially those involving prosthetic materials (PJI). Although less virulent than S. aureus, S. epidermidis is involved in chronic infections notably due to its ability to form biofilm. Moreover, it is frequently multiresistant to antibiotics. In this context, the development of additional or alternative antibacterial therapies targeting the biofilm is a priority.

Method

The aim of this study was to evaluate in vitro the activity of phage lysin exebacase (CF-301) against biofilms formed by 19 S. epidermidis clinical strains responsible for PJI. We determined the remaining viable bacteria inside the biofilm (counting after serial dilution and plating) and the biomass (bacteria and extracellular matrix, using crystal violet staining) after 24h of exposition to exebacase at different concentrations, alone (0.05; 0.5; 5; 50 and 150 mg/L) or in combination (5, 50 and 150 mg/L) with antibiotics commonly used to treat multi-resistant S. epidermidis PJI (rifampin (1 mg/L), vancomycin (10mg/L) and daptomycin (10mg/L)). In this study, synergy was defined as a significantly higher effect of the association in comparison to the sum of the effect of each molecule.