The common practice for insertion of distal locking screws of intramedullary (IM) nails is a freehand technique under fluoroscopic control. The process is technically demanding, time-consuming and afflicted to considerable radiation exposure to patient and surgical personnel. A new technique is introduced which guides the surgeon by landmarks on the X-ray projection. 18 fresh frozen human below-knee specimens (incl. soft tissue) were used. Each specimen was instrumented with an Expert Tibial Nail (Synthes GmbH, Switzerland) and was mounted on an OR-table. Two distal interlocking techniques were performed in random order using a Siemens ARCADIS C-arm system (Siemens AG, Munich, Germany). The newly developed guided technique, guides the surgeon by visible landmarks projected onto the fluoroscopy image. A computer program plans the drilling trajectory by 2D-3D conversion and provides said guiding landmarks for drilling in real-time. No additional tracking or navigation equipment is needed. All four distal screws (2 mediolateral, 2 anteroposterior) were placed in each procedure. Operating time, number of taken X-rays and radiation time were recorded per procedure and for each single screw. 8 procedures were performed with the freehand technique and 10 with the guided technique. A 58% reduction in number of fluoroscopy shots per screw was found for the guided technique (7.4±3.4 vs. 17.6±10.3; p < 0.001). Total radiation time was 55% lower for the guided technique (17.1 ± 3.7s vs. 37.9 ± 9.1s) (p = 0.001). Operating time was shorter by 22% in the guided technique (3.2±1.2 min vs. 4.1±2.1 min p = 0.018). In an experimental setting, the newly developed guided freehand technique has proven to markedly reduce radiation exposure when compared to the conventional freehand technique. The method enhances established clinical workflows and does not require cost intensive add-on devices or extensive training. A newly developed simple navigated technique has proven to markedly reduce radiation exposure and time for distal locking of intramedullary nails.
Despite all gain of knowledge, septic and aseptic loosening of endoprostheses still remain unsolved problems. In loosening of joint arthroplasty a periprosthetic membrane is found between the bone and the loosened implant. The characteristics of the membrane are influenced by the process that leads to the loosening of the endoprosthesis. The aim of the study was to introduce a classification system that enables a standardized diagnostic evaluation and helps to determine the aetiology of the loosening process. Based on histomorphological criteria and polarized light microscopy, four types of periprosthetic membranes were defined: periprosthetic membranes of the wear particle type (type I), periprosthetic membranes of the infectious type (type II), periprosthetic membranes of the combined type (type III), and periprosthetic membranes of the indifferent type (type IV). Periprosthetic membranes of 268 patients were analyzed according to the defined criteria. The interobserver reproducibility was sufficient (95%). The correlation between histopathological and microbiological diagnosis was high (89%, p<
0,001). The four types of periprosthetic membranes showed a significantly different time of revision. This classification system enables a standardized diagnostic procedure. It therefore is a basis for further studies concerning the etiology and pathogenesis of prosthesis loosening. The reliability of this histomorphological examination in diagnosing infections is currently reviewed.