Computer-aided systems have been developed recently in order to improve the precision of implantation of a total knee replacement (TKR). Several authors demonstrated that the accuracy of implantation of TKR was higher with the help of a navigation system in comparison to the conventional, manual technique. Theoretically, the clinical results and the survival rates should be improved. Our team was one of the first all over the world which decided to use routinely a navigation system for TKR. Prostheses designed with a mobile bearing polyethylene component allow an increased congruence between femoral and tibial gliding surface, and should decrease the risk of long-term polyethylene wear. We designed a prosthetic system with one of the highest congruence on the current market. These prostheses might be technically more demanding than more conventional designs, and involve specific complications like bearing luxation. Navigation systems might be helpful in this was as well. In the present study, we wanted to test clinically the theoretic advantages of these three specific points of our system (navigated implantation, mobile bearing and increased congruence) with a five-year clinical and radiological follow-up. 128 patients were operated on at our Department with this TKR system between 2000, and were contacted for a five-year clinical and radiological follow-up. The clinical and functional results were evaluated according to the Knee Society Scoring System (KSS). The subjective results were analyzed with the Oxford Knee Score. The accuracy of implantation was assessed on post-operative long leg antero-posterior and lateral X-rays. The survival rate after 5 years was calculated according to the Kaplan-Meier technique.INTRODUCTION
MATERIAL AND METHODS