header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_14 | Pages 50 - 50
1 Nov 2018
Sternecker K Geist J Beggel S Dietz-Laursonn K de la Fuente M Frank H Furia J Milz S Schmitz C
Full Access

A substantial body of evidence supports the use of extracorporeal shock wave therapy (ESWT) for fracture non-unions in human medicine. However, the success rate (i.e., radiographic union at six months after ESWT) is only approximately 75%. Detailed knowledge regarding the underlying mechanisms that induce bio-calcification after ESWT is limited. The aim of the present study was to analyse the biological response within mineralized tissue of a new invertebrate model organism, the zebra mussel Dreissena polymorpha, after exposure with extracorporeal shock waves (ESWs). Mussels were exposed to ESWs with positive energy density of 0.4 mJ/mm2 or were sham exposed. Detection of newly calcified tissue was performed by concomitantly exposing the mussels to fluorescent markers. Two weeks later, the fluorescence signal intensity of the valves was measured. Mussels exposed to ESWs showed a statistically significantly higher mean fluorescence signal intensity within the shell zone than mussels that were sham exposed. Additional acoustic measurements revealed that the increased mean fluorescence signal intensity within the shell of those mussels that were exposed to ESWs was independent of the size and position of the focal point of the ESWs. These data demonstrate that induction of bio-calcification after ESWT may not be restricted to the region of direct energy transfer of ESWs into calcified tissue. The results of the present study are of relevance for better understanding of the molecular and cellular mechanisms that induce formation of new mineralized tissue after ESWT. Specifically, bio-calcification following ESWT may extend beyond the direct area of treatment.


The Journal of Bone & Joint Surgery British Volume
Vol. 84-B, Issue 4 | Pages 592 - 599
1 May 2002
Maier M Milz S Tischer T Münzing W Manthey N Stäbler A Holzknecht N Weiler C Nerlich A Refior HJ Schmitz C

There is little information about the effects of extracorporeal shock-wave about application the effects (ESWA) of on normal bone physiology. We have therefore investigated the effects of ESWA on intact distal rabbit femora in vivo. The animals received 1500 shock-wave pulses each of different energy flux densities (EFD) on either the left or right femur or remained untreated. The effects were studied by bone scintigraphy, MRI and histopathological examination.

Ten days after ESWA (0.5 mJ/mm2 and 0.9 mJ/mm2 EFD), local blood flow and bone metabolism were decreased, but were increased 28 days after ESWA (0.9 mJ/mm2). One day after ESWA with 0.9 mJ/mm2 EFD but not with 0.5 mJ/mm2, there were signs of soft-tissue oedema, epiperiosteal fluid and bone-marrow oedema on MRI. In addition, deposits of haemosiderin were found epiperiosteally and within the marrow cavity ten days after ESWA.

We conclude that ESWA with both 0.5 mJ/mm2 and 0.9 mJ/mm2 EFD affected the normal bone physiology in the distal rabbit femur. Considerable damaging side-effects were observed with 0.9 mJ/mm2 EFD on periosteal soft tissue and tissue within the bone-marrow cavity.