In oblique olecranon fracture, fracture line begins in the trochlear notch and proceeds distally to the dorsal cortex of the ulna. We have experienced a nonunion of Reverse oblique olecranon fracture has instability.Introduction
Hypothesis
The most important issue in the assessment of fracture healing is to acquire information about the restoration of the mechanical integrity of bone. Many researchers have attempted to monitor stiffness either directly or indirectly for the purpose of assessing strength, as strength has been impossible to assess directly in clinical practice. The purpose of this study was thus to determine the relationship between bending stiffness and strength using mechanical testing at different times during the healing process. Unilateral, transverse, mid-tibial osteotomies with a 2-mm gap were performed in 28 rabbits. The osteotomy site was stabilized using a double-bar external fixator. The animals were divided into four groups (n=7/group/time point; 4, 6, 8 and 12 weeks). A series of images from micro-computed tomography of the gap was evaluated to detect the stage of fracture healing and a 4-point bending test was performed to measure stiffness and strength. Formation of cortex and medullary canal at the gap was seen in the 12-week group and would represent the remodeling stage. In addition, the relationship between stiffness and strength remained almost linear until at least 12 weeks. However, stiffness recovered much more rapidly than strength. Strength was not fully restored until the later stages of fracture healing. However, the current study demonstrated that stiffness could be monitored as a surrogate marker of strength until at least the remodeling stage.
The most important issue in the assessment of fracture healing is to acquire information about the restoration of the mechanical integrity of bone. Echo tracking (ET) can noninvasively measure the displacement of a certain point on the bone surface under a load. Echo tracking has been used to assess the bone deformation angle of the fracture healing site. Although this method can be used to evaluate bending stiffness, previous studies have not validated the accuracy of bending stiffness. The purpose of the present study is to ensure the accuracy of bending stiffness as measured by ET. A four-point bending test of the gap-healing model in rabbit tibiae was performed to measure bending stiffness. Echo tracking probes were used to measure stiffness, and the results were compared with results of stiffness measurements performed using laser displacement gauges. The relationship between the stiffness measured by these two devices was completely linear, indicating that the ET method could precisely measure bone stiffness.