Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 252 - 252
1 Mar 2013
Marouf M Saebnoori E Rahimi MK Shahrabi T Sanjabi S
Full Access

INTRODUCTION

Nickel-Titanium (NiTi) with a molar composition of 50:50 or nitinol alloy exhibit special mechanical properties. These properties can be put to excellent use in various biomedical applications including: intravascular stent, orthodontic wires, prosthetic heart valves, angioplastic guides, orthopaedic implants, bone substitution materials, endoscopic instruments, implant stents and filters. Microorganism adhesion properties of nitinol may be decreased by oxidizing agents and surface heat treatment. In the present study, we investigated the microorganism adhesion and cytotoxicity of the thin film of nitinol and compared these properties with that of bulk form.

METHODS

In this analytical comparative study, small parts of thin film and bulk form of nitinol (15 mm×15 mm) were selected and sterilized in autoclave (15 lb for 20 min). Five microorganism, four bacteria (Ecoli, staphylococcus aureus, pseudomonase aerugenosa, bacillus cereus) and one mold form of fungi (candida albicans) were selected. The sample materials (thin film and bulk forms of nitinol) were treated by microorganism suspensions in 37°C for 24h in different culture flasks. Every suspension of five microorganisms was counted before and after examination. Adherence activity of these forms of nitinol was studied by optical and electron microscopy. The interaction between the microorganisms and the two forms of nitinol alloy were studied by variation in number of microorganisms counted after introduction of these living organisms to the surface of the alloy.