header advert
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 83 - 83
1 Nov 2016
Saithna A Longo A Leiter J MacDonald P Old J
Full Access

Recent literature has demonstrated that conventional arthroscopic techniques do not adequately visualise areas of predilection of pathology of the long head of biceps (LHB) tendon and are associated with a 30–50% rate of missed diagnoses. The aim of this study was to evaluate the safety, effectiveness and ease of performing biceps tenoscopy as a novel strategy for reducing the rate of missed diagnoses.

Five forequarter amputation cadaver specimens were studied. The pressure in the anterior compartment was measured before and after surgical evaluation. Diagnostic glenohumeral arthroscopy was performed and the biceps tendon was tagged to mark the maximum length visualised by pulling the tendon into the joint. Biceps tenoscopy was performed using 3 different techniques (1. Flexible video-endoscopy, 2. Standard arthroscopy via Neviaser portal. 3. Standard arthroscope via antero-superior portal with retrograde instrumentation). Each was assessed for safety, ease of the procedure and whether the full length of the extra-articular part of the LHB tendon could be visualised. The t-test was used to compare the length of the LHB tendon visualised at standard glenohumeral arthroscopy vs that visualised at biceps tenoscopy. An open dissection was performed after the arthroscopic procedures to evaluate for an iatrogenic injury to local structures.

Biceps tenoscopy allowed visualisation to the musculotendinous junction in all cases. The mean length of the tendon visualised was therefore significantly greater at biceps tenoscopy (104 mm) than at standard glenohumeral arthroscopy (33 mm) (mean difference 71 mm, p<0.0001). Biceps tenoscopy was safe with regards to compartment syndrome and there was no difference between pre- and post-operative pressure measurements (mean difference 0 mmHg, p=1). No iatrogenic injuries were identified at open dissection.

Biceps tenoscopy allows excellent visualisation of the entire length of the LHB tendon and therefore has the potential to reduce the rate of missed diagnoses. This study did not demonstrate any risk of iatrogenic injury to important local structures or any risk of compartment syndrome. Clinical evaluation is required to further validate this technique.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 80 - 80
1 Nov 2016
Saithna A Longo A Leiter J MacDonald P Old J
Full Access

The majority of studies reporting sensitivity and specificity data for imaging modalities and physical examination tests for long head of biceps (LHB) tendon pathology use arthroscopy as the gold standard. However, there is little published data to validate this as an appropriate benchmark. The aim of this study was to determine the maximum length of the LHB tendon that can be seen at glenohumeral arthroscopy and whether it allows adequate visualisation of common sites of pathology.

Seven female cadaveric specimens were studied. Mean age was 74 years (range 44–96 years). Each specimen underwent arthroscopy in lateral decubitus (LD) and beach chair (BC) positions. The LBH-tendon was tagged with a suture placed with a spinal needle marking the intra-articular length and the maximum excursions achieved using a hook and a grasper in both LD and BC positions. T-tests were used to compare data.

The mean intra-articular and extra-articular lengths of the tendon were 23.9 mm and 82.3 mm respectively. The mean length of tendon that could be visualised by pulling it into the joint with a hook was significantly less than with a grasper (LD: hook 29.9 mm, grasper 33.9 mm, mean difference 4 mm, p=0.0032. BC: hook 32.7 mm, grasper 37.6 mm, mean difference 4.9 mm, p=0.0001). Using the BC position allowed visualisation of a significantly greater length than the LD position when using either a hook (mean difference 2.86 mm, p=0.0327) or a grasper (mean difference 3.7 mm, p=0.0077). The mean length of the extra-articular part of the tendon visualised using a hook was 6 mm in LD and 8.9 mm in BC. The maximum length of the extra-articular portion visualised using this technique was 14 mm (17%).

Pulling the tendon into the joint with a hook does not allow adequate visualisation of common distal sites of pathology in either LD or BC. Although the BC position allows a significantly greater proportion of the tendon to be visualised this represents a numerically small value and is not likely to be clinically significant. The use of a grasper also allowed greater excursion but results in iatrogenic tendon injury which precludes its use. The reported incidence of pathology in Denard zone C (distal to subscapularis) is 80% and in our study it was not possible to evaluate this zone even by using a grasper or maximum manual force to increase excursion. This is consistent with the extremely high rate of missed diagnoses reported in the literature. Surgeons should be aware that the technique of pulling the LHB-tendon into the joint is inadequate for visualising distal pathology and results in a high rate of missed diagnoses. Furthermore, efforts to achieve greater excursion by “optimum” limb positioning intra-operatively do not confer an important clinical advantage and are probably unnecessary.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIV | Pages 34 - 34
1 Jul 2012
Modi C Hill C Saithna A Wainwright D
Full Access

Trans-articular coronal shear fractures of the distal humerus pose a significant challenge to the surgeon in obtaining an anatomical reduction and rigid fixation and thereby return of good function. A variety of approaches have been described which include the extended lateral and anterolateral approaches and arthroscopically-assisted fixation for non-comminuted fractures. Fixation methods include open or percutaneous cannulated screws and headless compression screws directed either anterior to posterior or posterior to anterior. We describe an illustrated, novel approach to this fracture which is minimally invasive but enables an anatomical reduction to be achieved.

A 15 year old male presented with a Bryan and Morrey type 4 fracture as described by McKee involving the left distal humerus. He was placed in a lateral position with the elbow over a support. A posterior longitudinal incision and a 6cm triceps split from the tip of the olecranon was made. The olecranon fossa was exposed and a fenestration made with a 2.5mm drill and nibblers as in the OK (Outerbridge-Kashiwagi) procedure. A bone lever was then passed though the fenestration and used to reduce the capitellar and trochlear fracture fragments into an anatomical position with use of an image intensifier to confirm reduction. The fracture was then fixed with two headless compression screws from posterior to anterior into the capitellar and trochlear fragments (see images). Early mobilisation and rehabilitation were commenced. Follow-up clinical examination and radiographs at six weeks revealed excellent range-of-motion and function with anatomical bony union.

We believe that this novel approach to this fracture reduces the amount of soft tissue dissection associated with conventional approaches and their associated risks and also enables earlier return to function with restoration of anatomy.