Fractures of the clavicle are relatively common, occurring mostly in younger patients and have historically been managed non-operatively. Recent studies have shown an advantage to surgical reduction and stabilisation of clavicle fractures with significant displacement. Currently, fracture displacement is measured using simple anterior-posterior two-dimensional x-rays of the clavicle. Since displacement can occur in all three-dimensions, however, evaluation of the amount displacement can be difficult and inaccurate. The purpose of this study was to determine the view that provides the most accurate assessment. Nine CT scans of acute displaced clavicle fractures were analysed with AmiraDEV5.2.2 Imaging software. Measurements for degrees of shortening and fracture displacement of the fracture clavicle were taken. Using a segmentation and manipulation module (ITK toolkit), five digitally reconstructed radiographs (DRRs) mimicking antero-posterior x-rays were created for every CT, with each differing by projection angle (ranging from 20° upwards tilt to 20° downwards tilt). Measurements were taken on each DRR using landmarks of entire clavicle length, distance from vertebrae to fracture (medial fragment length), distance from fracture to acromium (lateral fragment length), and horizontal shortening, and then compared to the true measurement obtained from the original CT. For all 9 samples, after comparing the measurements of clavicle fracture displacement in each 2D image, we found that an AP view with a 20° downward tilt yielded displacement measurements closest to the 3D (“gold standard”) measurements. The results agree with previous data collected from cadaveric specimens using physical X-ray film images. DDRs enable creation of multiple standard AP radiographs from which accurate tilt can be measured. The large deviation in measurements on different DRR projections motivates consideration of standardising X-ray projections. A uniform procedure would allow one to correctly evaluate the displacement of clavicular fractures if fracture displacement information is to be utilized in motivating surgical decision-making.
Radiofrequency (RF) ablation carries success rate of 70–90% in the treatment of Osteoid Osteoma (OO). Failures are related to incomplete ablation which might be caused by the probe’s small heating radius (0.5–0.8 cm). Water cooled tips were developed in order to prevent charring of the tip and adjacent tissues and to allow for a larger, up to 3cm ablation diameter. To our knowledge safety and efficiency of this probe in the treatment of pediatric OO were never reported. Our goal was to examine if this technique, when added to conventional RF ablation, improves the clinical results and whether it carries any additional risks in the pediatric population. Twenty two OO patients, 15 males and 7 females, 3 years and 6 months to 18 years old, were treated using the Cool-tip™ Tyco probe in a cooled mode followed immediately by conventional RF cycle under general anesthesia, in the CT suite. Fifteen of the lesions were in the femur, 2 in the tibia and the remainder lesions were located in the humerus, talus, calcaneus, 2nd metatarsus and sacrum. The OO was intraarticular in 5 patients: femur (3), calcaneus and Talus. Follow-up period averaged 38.5 months (range 16–66 months). All patients but one had their symptoms resolved immediately following a single treatment (95.5% success rate). One patient had partial relief and underwent second successful ablation. There were one recurrence after 18 months and one superficial infection. No fractures, neurovascular complications or growth disturbances were encountered. We conclude that the addition of a Cool-tip cycle to conventional RF ablation in children is safe, efficient and reduces the risk of recurrence without adverse effects specific to this age group. We attribute this success to the larger diameter of heat distribution occurring due to cooling of the tip and the prevention of probe and tissue charring.
We undertook a prospective study in 51 male patients aged between 17 and 27 years to ascertain whether immobilisation after primary traumatic anterior dislocation of the shoulder in external rotation was more effective than immobilisation in internal rotation in preventing recurrent dislocation in a physically active population. Of the 51 patients, 24 were randomised to be treated by a traditional brace in internal rotation and 27 were immobilised in external rotation of 15° to 20°. After immobilisation, the patients undertook a standard regime of physiotherapy and were then assessed clinically for evidence of instability. When reviewed at a mean of 33.4 months (24 to 48) ten from the external rotation group (37%) and ten from the internal rotation group (41.7%) had sustained a futher dislocation. There was no statistically significant difference (p = 0.74) between the groups. Our findings show that external rotation bracing may not be as effective as previously reported in preventing recurrent anterior dislocation of the shoulder.