Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 106 - 106
1 Dec 2013
Kluess D Ruther C Gabler C Mittelmeier W Bader R
Full Access

Clinically applied methods of assessing implant fixation and implant loosening are of sub-optimal precision, leading to the risk of unsecure indication of revision surgery and late recognition of bone defects. Loosening diagnosis involving measuring the eigenfrequencies of implants has its roots in the field of dentistry. The changing of the eigenfrequencies of the implant-bone-system due to the loosening state can be measured as vibrations or structure-borne sound. In research, vibrometry was studied using an external shaker to excite the femur-stem-system of total hip replacements and to measure the resulting frequencies by integrated accelerometers or by ultrasound. Since proper excitation of implant components seems a major challenge in vibrometry, we developed a non-invasive method of internal excitation creating an acoustic source directly inside the implant.

In the concept proposed for clinical use, an oscillator is integrated in the implant, e.g. the femoral stem of a total hip replacement. The oscillator consists of a magnetic or magnetisable spherical body which is fixed on a flat steel spring and is excited electromagnetically by a coil placed outside the patient. The oscillator impinges inside the implant and excites this to vibrate in its eigenfrequency. The excitation within the bending modes of the implant leads to a sound emission to the surrounding bone and soft tissue. The sound waves are detected by an acoustic sensor which is applied on the patient's skin. Differences in the signal generated result from varying level of implant fixation.

The sensor principle was tested in porcine foreleg specimens with a custom-made implant. Influence of the measurement location at the porcine skin and different levels of fixation were investigated (press-fit, slight loosening, advanced loosening) and compared to the pull-out strength of the implant. Evaluation of different parameters, especially the frequency spectrum resulted in differences of up to 12% for the comparison between press-fit and slight loosening, and 30% between press-fit and advanced loosening. A significant correlation between the measured frequency and the pull-out strength for different levels of fixation was found.

Based on these findings, an animal study with sensor-equipped bone implants was initiated using a rabbit model. The implants comprised an octagonal cross-section and were implanted into a circular drill hole at the distal femur. Thereby, definite gaps were realized between bone and implant initially. After implantation, the bone growth around the implant started and the gaps were successively closed over postoperative period. Consequently, since the tests had been started with a loose implant followed by its bony integration, a reverse loosening situation was simulated. In weekly measurements of the eigenfrequencies using the excitation and sensor system, the acoustic signals were followed up. Finally, after periods of 4 and 12 weeks after implantation, the animals were sacrificed and pull-out tests of the implants were performed to measure the implant fixation. The measured implant fixation strengths at the endpoint of each animal trial were correlated with the acoustic signals recorded.