Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 133 - 133
1 Sep 2012
Esser M Gabbe B de Steiger R Bucknill A Russ M Cameron P
Full Access

Traumatic disruption of the pelvic ring has a high risk of mortality. These injuries are predominantly due to high-energy, blunt trauma and severe associated injuries are prevalent, increasing management complexity. This population-based study investigated predictors of mortality following severe pelvic ring fractures managed in an organised trauma system.

Cases aged greater than 15 years from 1st July 2001 to 30th June 2008 were extracted from the population-based state-wide Victorian State Trauma Registry for analysis. Patient demographic, pre-hospital and admission characteristics were considered as potential predictors of mortality. Multivariate logistic regression was used to identify predictors of mortality with adjusted odds ratios (AOR) and 95% confidence intervals (CI) calculated.

There were 348 cases over the 8-year period. The mortality rate was 19%. Patients aged greater than 65 years were at higher odds of mortality (AOR 7.6, 95% CI: 2.8, 20.4) than patients aged 15–34 years. Patients hypotensive at the scene (AOR 5.5, 95% CI: 2.3, 13.2), and on arrival at the definitive hospital of care (AOR 3.7, 955 CI: 1.7, 8.0), were more likely to die than patients without hypotension. The presence of a severe chest injury was associated with an increased odds of mortality (AOR 2.8, 95% CI: 1.3, 6.1), while patients injured in intentional events were also more likely to die than patients involved in unintentional events (AOR 4.9, 95% CI: 1.6, 15.6). There was no association between the hospital of definitive management and mortality after adjustment for other variables, despite differences in the protocols for managing these patients at the major trauma services (Level 1 trauma centres).

The findings highlight the importance of the need for effective control of haemodynamic instability for reducing the risk of mortality. As most patients survive these injuries, further research should focus on long term morbidity and the impact of different treatment approaches.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 78 - 78
1 May 2012
Esser M Russ M Hamilton S Liew S
Full Access

Osteochondral fracture of the femoral head is an uncommon injury with a high potential for a poor functional outcome. Management is often challenging with limited options. We present two cases in which osteochondral fractures of the femoral head were treated with partial resurfacing using the HemiCAP System (Arthrosuface, Franklin MA, USA).

Patient 1

A 22-year-old male professional motorbike rider presented with an anterior left hip dislocation that occurred during a race. A CT scan after a closed reduction revealed a large osteochondral impaction fracture/defect that was addressed via partial resurfacing using the HemiCAP System.

Patient 2

A 34-year-old male presented with an anterior left hip dislocation after a motor vehicle accident and underwent a closed reduction. CT showed a loose osteochondral fragment, that was fixed back with headless screws, and an adjacent defect was addressed with a HemiCAP implant.

Both patients were kept non weight-bearing for two months and had an uneventful recovery. Patient 1 was last reviewed at our institution one month post-operatively with a pain-free hip. His follow-up is being continued interstate and at telephone interview, 18 months after surgery, he had returned to full function and resumed riding on the professional racing circuit. Patient 2, at three-month review, had a pain-free hip with a full range of motion. CT scan showed excellent joint surface congruity at the implant articular surface junction.

We report the use of the HemiCAP System as a novel method of treating osteochondral defects, which has never been reported before. There has only been one other reported case of using a HemiCAP in an osteoarthritic femoral head. This is a short follow-up with only two patients treated; however we are encouraged by the results so far, as there are no other satisfactory alternative treatment options.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIII | Pages 202 - 202
1 May 2012
Russ M Simm A Leong J Liew S Dowrick A
Full Access

The Orthopaedic Unit at The Alfred has been using an external fixator in a novel configuration for protecting lower limb wounds after free flap surgery (sometimes even in the absence of a concomitant bony injury). This soft-tissue frame allows the limb to be elevated without contact so that there is no pressure on the flap and its pedicle. Thus, optimising the arteriovenous circulation. We report our initial experience with these soft tissue frames.

The soft tissue frame is not necessarily applied for definitive fracture care, but constructed or modified to optimise elevation of the leg, remove direct pressure from the soft tissues, and stabilise the muscles adjacent to the flap. All ankle-spanning frames held the foot in a plantargrade position to optimise blood flow and recovery (prevent equinus), and minimise intra-compartmental pressure.

During 2007, the Plastic Surgery Unit performed 23 free flaps to the lower limbs of 22 patients. Five of these patients had a soft-tissue frame constructed. One patient had a frame applied purely to manage the soft tissue injury, and the other four, who required an external fixator for a bony injury, had their frame modified. Four of the five patients study patients were injured in motor vehicle accidents and one was injured in a simple fall. All five free flaps survived and none required any further surgery. No patients suffered complications (such as bleeding, pin-track infections, or osteomyelitis) related to the soft tissue frame.

We strongly recommend considering an external fixator in a modified configuration after lower limb free flap surgery. Constructing a soft tissue frame has no added risks if the fixator is already required. In the case where there is no bony injury, a soft tissue frame has the benefits of providing optimal flap conditions and maintaining anatomical joint alignment. However, this must be balanced against the small risk associated with the insertion of pins (such as infection) and the need for an extra procedure to remove the frame. As always, treatment must be tailored to the individual patient.