Advertisement for orthosearch.org.uk
Results 1 - 4 of 4
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 52 - 52
1 Feb 2020
Sadhwani S Picache D Janssen D de Ruiter L Rankin K Briscoe A Verdonschot N Shah A
Full Access

Introduction

Polyetheretherketone (PEEK) has been proposed as an implant material for femoral total knee arthroplasty (TKA) components. Potential clinical advantages of PEEK over standard cobalt chrome alloys include modulus of elasticity and subsequently reduced stress shielding potentially eliminating osteolysis, thermal conduction properties allowing for a more natural soft tissue environment, and reduced weight enabling quicker quadriceps recovery. Manufacturing advantages include reduced manufacturing and sterilization time, lower cost, and improved quality control. Currently, no PEEK TKA implants exist on the market. Therefore, evaluation of mechanical properties in a pre-clinical phase is required to minimize patient risk.

The objectives of this study include evaluation of implant fixation and determination of the potential for reduced stress shielding using the PEEK femoral TKA component.

Methods and Materials

Experimental and computational analysis was performed to evaluate the biomechanical response of the femoral component (Freedom Knee, Maxx Orthopedics Inc., Plymouth Meeting, PA; Figure 1).

Fixation strength of CoCr and PEEK components was evaluated in pull-off tests of cemented femoral components on cellular polyurethane foam blocks (Sawbones, Vashon Island, WA). Subsequent testing investigated the cemented fixation using cadaveric distal femurs. The reconstructions were subjected to 500,000 cycles of the peak load occurring during a standardized gait cycle (ISO 14243-1). The change from CoCr to PEEK on implant fixation was studied through computational analysis of stress distributions in the cement, implant, and the cement-implant interface. Reconstructions were analyzed when subjected to standardized gait and demanding squat loads.

To investigate potentially reduced stress shielding when using a PEEK component, paired cadaveric femurs were used to measure local bone strains using digital image correlation (DIC). First, standardized gait load was applied, then the left and right femurs were implanted with CoCr and PEEK components, respectively, and subjected to the same load. To verify the validity of the computational methodology, the intact and reconstructed femurs were replicated in FEA models, based on CT scans.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_7 | Pages 106 - 106
1 May 2016
de Ruiter L Janssen D Briscoe A Verdonschot N
Full Access

Introduction

A previous computational study on an all-polymer PEEK-on-UHMWPE total knee replacement implant showed improved periprosthetic bone loading, compared to a conventional implant [1]. That study used a simulated gait cycle to determine distal loading, but a patella was not included. Substantial distal decrease of bone remodeling stimulus was found, in accordance with previous reports [2], but it was not consistent with other clinical and post-mortem DEXA results, which found the largest loss of bone stock in the anterior region [3,4]. As patellofemoral forces are relatively low during gait compared to squatting, we simulated a deep squat, expecting that a high-demand activity would provide similar indications of bone loss as literature [3,4]. Consequently, we applied both high tibiofemoral and patellofemoral loads, to provide more insight in the potential benefits of a new PEEK-Optima® femoral component on periprosthetic bone stock.

Methods

We adopted a deep squat finite element model from Zelle et al. and included quasi-static deep flexion and load sharing at the posterior condyles [6]. A new implant design was inserted, with three variations in material properties: intact, CoCr and PEEK. The stiffness of the femoral elements was mapped from CT and applied to either the cut femur only (CoCr and PEEK) or the entire femoral construct (intact). The strain energy density (SED) was evaluated in the periprosthetic region as a measure for bone remodeling stimulus. To examine the effects of the entire exercise, SED values were integrated over all increments.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 140 - 140
1 Jan 2016
de Ruiter L Janssen D Briscoe A Verdonschot N
Full Access

Introduction

Conventional implant designs in total knee arthroplasty (TKA) are based on metal on UHMWPE bearing couples. Although this procedure is quite successful, early loosening is still a matter of concern. One of the causes for early failure is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The introduction of a polyetheretherketone (PEEK) on UHMWPE bearing couple could address this problem. With mechanical properties more similar to distal (cortical) bone it could allow stresses to be distributed more naturally in the distal femur. A potential adverse effect, however, is that the femoral component and the underlying cement mantle may be at risk of fracturing. Therefore, we analyzed the effect of a PEEK-Optima® femoral component on stress shielding and the integrity of the component and cement mantle, compared to a conventional Cobalt-Chromium (CoCr) alloy implant.

Methods

We created a Finite Element (FE) model of a reconstructed knee in gait, based on the ISO-14243-1 standard. The model consisted of an existing cemented cruciate retaining TKA design implanted on a distal femur, and a tibial load applicator, which together with the bone cement layer and the tibial implant is referred to as the tibial construct. The knee flexion angle was controlled by the femoral construct, consisting of the femoral implant, the bone cement and the distal femur. The tibial construct was loaded with an axial force, anterior-posterior (AP) force and a rotational torque, representing the ground reaction force, soft tissue constraints and internal/external rotation of the tibia, respectively. The integrity of the femoral component and cement mantle were expressed as a percentage of their yield stress. Stress shielding in the periprosthetic femur was evaluated by the strain energy (density) in the bone and compared to a model replicating an intact knee joint.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 513 - 513
1 Dec 2013
Ruiter L Janssen D Briscoe A Verdonschot N
Full Access

Introduction

Current clinical practice in total knee arthroplasty (TKA) is largely based on metal on polyethylene bearing couples. A potential adverse effect of the stiff metal femoral component is stress shielding, leading to loss of bone stock, periprosthetic bone fractures and eventually aseptic loosening of the component. The use of a polymer femoral component may address this problem. However, a more flexible material may also have consequences for the fixation of the femoral component. Concerns are raised about its expected potential to introduce local stress peaks on the interface.

The objective of this study was to analyze the effect of using a polyether-etherketone (PEEK-Optima®) femoral component on the cement-implant interface. We analyzed the interface stress distribution occurring during normal gait, and compared this to results of a standard CoCr component.

Materials and methods

An FEA model was created, consisting of a femoral component cemented onto a femur, and a polyethylene tibial component. A standard loading regime was applied mimicking an adapted gait cycle, according to ISO14243-1. The implant-cement interface was modelled as a zero-thickness layer connecting the implant to the cement layer. Femoral flexion/extension was prescribed for the femur in a displacement controlled manner, while the joint loads were applied to pivoting nodes attached to the tibial construct, consistent with the ISO standard. Implant-cement interface properties were adopted from a previous study on CoCr interface debonding[1].