Advertisement for orthosearch.org.uk
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 126 - 126
1 Mar 2017
Zumbrunn T Duffy M Rubash H Malchau H Muratoglu O Varadarajan KM
Full Access

One of the key factors responsible for altered kinematics and joint stability following contemporary total knee arthroplasty (TKA) is resection of the anterior cruciate ligament (ACL). Therefore, retaining the ACL is often considered to be the “holy grail” of TKA. However, ACL retention can present several technical challenges, and in some cases may not be viable due to an absent or non-functional ACL. Therefore, the goal of this research was to investigate whether substitution of ACL function through an anterior post mechanism could improve kinematic deficits of contemporary posterior cruciate ligament (PCL) retaining (CR) implants. This was done using KneeSIM, a previously established dynamic simulation tool based on an Oxford-rig setup. Deep knee bend, chair-sit, stair-ascent and walking were simulated for a contemporary ACL sacrificing (CR) implant, two ACL retaining implants, and an ACL substituting and PCL retaining implant. The motion of the femoral condyles relative to the tibia was recorded for kinematic comparisons.

Our results revealed that, like ACL retaining implants, the ACL substituting implant could also provide kinematic improvements over contemporary ACL sacrificing implants by reducing early posterior femoral shift and preventing paradoxical anterior sliding. Such ACL substituting implants may be a valuable addition to the armament of joint surgeons, allowing them to provide improved knee function even when ACL retention is not feasible. Further research is required to investigate this mechanism in vitro and in vivo to verify the results of the simulations, and to determine whether kinematic improvements translate into improved clinical outcomes.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_5 | Pages 69 - 69
1 Mar 2017
Muratoglu O Oral E Suhardi V Bichara D Rubash H Freiberg A Malchau H
Full Access

Introduction

Radiation cross-linking of ultrahigh molecular weight polyethylene (UHMWPE) has reduced the in vivo wear and osteolysis associated with bearing surface wear (1), significantly reducing revisions associated with this complication (2). Currently, one of the major and most morbid complications of joint arthroplasty is peri-prosthetic infection (3). In this presentation, we will present the guiding principles in using the UHMWPE bearing surface as a delivery device for therapeutic agents and specifically antibiotics. We will also demonstrate efficacy in a clinically relevant intra-articular model.

Materials and Methods

Medical grade UHMWPE was molded together with vancomycin at 2, 4, 6, 8, 10 and 14 wt%. Tensile mechanical testing and impact testing were performed to determine the effect of drug content on mechanical properties. Elution of the drug was performed in phosphate buffered saline (PBS) for up to 8 weeks and the detection of the drug in PBS was done by UV-Vis spectroscopy. A combination of vancomycin and rifampin in UHMWPE was developed to address chronic infection and layered construct containing 1 mm-thick drug-containing UHMWPE in the non-load bearing regions was developed for delivery. In a lapine (rabbit) intra-articular model (n=6 each), two plug of the layered UHMWPE construct were placed in the trochlear grove of the rabbit femoral surface and a porous titanium rod with a pre-grown biofilm of bioluminescent S. Aureus was implanted in the tibia. Bioluminescent imaging was employed to visualize and quantify the presence of the bacteria up to 3 weeks.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 26 - 26
1 Mar 2017
Muratoglu O Suhardi V Bichara D Kwok S Freiberg A Rubash H Yun S Oral E
Full Access

Introduction

About 2% of primary total joint replacement arthroplasty (TJA) procedures become infected. Periprosthetic joint infection (PJI) is currently one of the main reasons requiring costly TJA revisions, posing a burden on patients, physicians and insurance companies.1 Currently used drug-eluting polymers such as bone cements offer limited drug release profiles, sometimes unable to completely clear out bacterial microorganisms within the joint space. For this study we determined the safety and efficacy of an antibiotic-eluting UHMWPE articular surface that delivered local antibiotics at optimal concentrations to treat PJI in a rabbit model.

Materials and Methods

Skeletally mature adult male New Zealand White rabbits received either two non-antibiotic eluting UHMWPE (CONTROL, n=5) or vancomycin-eluting UHMWPE (TEST, n=5) (3 mm in diameter and 6 mm length) in the patellofemoral groove (Fig. 1). All rabbits received a beaded titanium rod in the tibial canal (4 mm diameter and 12 mm length). Both groups received two doses of 5 × 107 cfu of bioluminescent S. aureus (Xen 29, PerkinElmer 119240) in 50 µL 0.9 % saline in the following sites: (1) distal tibial canal prior to insertion of the rod; (2) articular space after closure of the joint capsule (Fig. 1). None of the animals received any intravenous antibiotics for this study. Bioluminescence signal (photons/second) was measured when the rabbits expired, or at the study endpoint (day 21). The metal rods were stained with BacLight® Bacterial Live-Dead Stain and imaged using two-photon microscopy to detect live bacteria. Hardware, polyethylene implants and joint tissues were sonicated to further quantify live bacteria via plate seeding.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 135 - 135
1 Feb 2017
Varadarajan KM Patel R Zumbrunn T Rubash H Malchau H Freiberg A Muratoglu O
Full Access

Introduction

Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues (Fig. 1). In this study, we utilized finite element analysis to evaluate tendon-liner contact pressure and tendon stresses with ACDM and conventional designs during hip extension, wherein the posterior edge of liner is in contact with the stem while the anterior edge is exposed to the soft-tissue.

Methods

The average uniaxial stiffness (350 N/mm), and average dimensions (width × thickness = 14mm × 4mm) of 10 cadaver psoas tendon samples were determined in a separate study. The iliopsoas tendon was modelled as a Yeoh hyper-elastic material, and the material constants were tuned to match the experimental uniaxial test data. Cadaver specific FEA models were created for 5 specimens (10 hips) using computed tomography (CT) scans. The implant components were modeled as being rigid relative to the iliopsoas tendon. The iliopsoas tendon was modelled as extending from its insertion point on the lesser trochanter to the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. Appropriately sized DM components were implanted virtually for each specimen. Once placed in its proper position, the liner was rotated about the flexion axis until it contacted the stem posteriorly to represent its orientation during hip extension (Fig. 2). A 500N tensile load was applied to the iliopsoas tendon and the average/max stresses within the tendon, and average/max contact pressures between the tendon and liner were measured.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 124 - 124
1 Feb 2017
Li G Dimitriou D Tsai T Park K Kwon Y Freiberg A Rubash H
Full Access

Introduction

An equal knee joint height during flexion and extension is of critical importance in optimizing soft-tissue balancing following total knee arthroplasty (TKA). However, there is a paucity of data regarding the in-vivo knee joint height behavior. This study evaluated in-vivo heights and anterior-posterior (AP) translations of the medial and lateral femoral condyles before and after a cruciate-retaining (CR)-TKA using two flexion axes: surgical transepicondylar axis (sTEA) and geometric center axis (GCA).

Methods

Eleven patient with advanced medial knee osteoarthritis (age: 51–73 years) who scheduled for a CR TKA and 9 knees from 8 healthy subjects (age: 23–49 years) were recruited. 3D models of the tibia and femur were created from their MR images. Dual fluoroscopic images of each knee were acquired during a weight-bearing single leg lunge. The OA knee was imaged again one year after surgery using the fluoroscopy during the same weight-bearing single leg lunge. The in vivo positions of the knee along the flexion path were determined using a 2D/3D matching technique. The GCA and sTEA were determined based on existing methods. Besides the anterior-posterior translation, the femoral condyle heights were determined using the distances from the medial and lateral epicondyle centers on the sTEA and GCA to the tibial plateau surface in coronal plane (Fig. 1). The paired t-test was applied to compare the medial and lateral condyle motion within each group (Healthy, OA, and CR-TKA). Two-way ANOVA followed post hoc Newman–Keuls test was adopted to detect significant differences among the groups. p<0.05 was considered significant.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 34 - 34
1 Feb 2017
Bragdon C Barr C Nebergall A Rolfson O Troelsen A Rubash H Malchau H Greene M
Full Access

Introduction

In vitro studies showed that the anti-oxidative properties of vitamin E stabilize free radicals while retaining the mechanical strength of UHMWPE. The purpose was to evaluate vitamin E diffused polyethylene (VEPE) wear and stability of femoral components using RSA. Patient reported outcome measures (PROMs) were evaluated to determine the clinical outcome at 5 years.

Methods

48 patients (52 hips), with osteoarthritis, participated in a 5 year RSA study. Each patient received a VEPE liner, a porous titanium coated shell, and an uncemented stem with a 32mm head. Tantalum beads were inserted into the VEPE and the femur to measure head wear and stem stability using RSA. RSA and PROM follow-up was obtained postoperatively, 6 months, 1, 2, 3, and 5 years after surgery. The Wilcoxon signed-ranks test determined if changes in penetration or migration were significant (p≤0.05).


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 154 - 154
1 May 2016
Zumbrunn T Varadarajan K Rubash H Malchau H Li G Muratoglu O
Full Access

INTRODUCTION

In native knees anterior cruciate ligament (ACL) and asymmetric shape of the tibial articular surface with a convex lateral plateau are responsible for differential medial and lateral femoral rollback. Contemporary ACL retaining total knee arthroplasty (TKA) improves knee function over ACL sacrificing (CR) TKA; however, these implants do not restore the asymmetric tibial articular geometry. This may explain why ACL retention addresses paradoxical anterior sliding seen in CR TKA, but does not fully restore medial pivot motion. To address this, an ACL retaining biomimetic implant, was designed by moving the femoral component through healthy in vivo kinematics obtained from bi-planar fluoroscopy and sequentially removing material from a tibial template. We hypothesized that the biomimetic articular surface together with ACL preservation would better restore activity dependent kinematics of normal knees, than ACL retention alone.

METHODS

Kinematic performance of the biomimetic BCR design (asymmetric tibia with convex lateral surface), a contemporary BCR implant (symmetric shallow dished tibia) and a contemporary CR implant (symmetric dished tibia) was analyzed using KneeSIM software. Chair-sit, deep knee bend, and walking were analyzed. Components were mounted on an average bone model created from magnetic resonance imaging (MRI) data of 40 normal knees. Soft-tissue insertions were defined on the average knee model based on MRI data, and mechanical properties were obtained from literature. Femoral condyle center motions relative to the tibia were tracked to compare different implant designs.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 15 - 15
1 May 2016
Varadarajan K Zumbrunn T Duffy M Patel R Freiberg A Malchau H Rubash H Muratoglu O
Full Access

Introduction

Dual Mobility (DM) implants have gained popularity for the treatment and prevention of hip dislocation, with increased stability provided by a large diameter mobile liner. However, distal regions of the liner can impinge on soft-tissues like hip capsule and iliopsoas, leading to anterior hip pain. Additionally, soft-tissue impingement may trap the mobile liner, leading to excessive loading of the liner rim, from engagement with the femoral stem, and subsequent intra-prosthetic dislocation. The hypothesis of this study was that reducing the liner profile below the equator (contoured design) can mitigate soft-tissue impingement without compromising inner-head pull-out resistance and overall hip joint stability (Fig. 1).

Methods

The interaction of conventional and contoured liners with anterior soft-tissues was evaluated in 10 cadaveric hips (5 specimens; 2 male, 3 female; age 65 ± 10 yrs; liner diameter 42–48mm) via visual observation and fluoroscopic imaging. A metal wire was sutured to the deep fibers of the iliopsoas tendon/muscle, and metal wires were embedded in the mobile liners for fluoroscopic visualization (Fig. 2). All soft-tissue except the anterior hip capsule and iliopsoas was removed, and a rope was attached to the iliopsoas to apply tension along its natural orientation.

Resistance to inner-head pull-out was evaluated via Finite Element Analysis (FEA) by simulating a full cycle of insertion of the inner head into the mobile liner and subsequent pullout. The femoral head, acetabular shell, and stem were modeled as rigid, while the mobile liner was modeled as plastically deformable. Hip joint stability was evaluated by dynamic simulations in for two dislocation modes: (A) Posterior dislocation (at 90° hip flexion) with internal hip rotation; (B) Posterior dislocation (starting at 90° flexion) with combined hip flexion and adduction. A 44 mm diameter conventional and a 44 mm contoured liner were evaluated during these tests.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 122 - 122
1 May 2016
Patel R Zumbrunn T Varadarajan K Freiberg A Rubash H Muratoglu O Malchau H
Full Access

Introduction

Dual-mobility (DM) liners have increased popularity due to the range of motion and stability provided by these implants. However, larger head diameters have been associated with anterior hip pain, due to surrounding soft-tissue impingement, particularly the iliopsoas. To address this, an anatomically contoured dual mobility (ACDM) liner was designed by reducing the volume of the liner below the equator (Fig1). Previous cadaver studies have shown that the ACDM significantly reduces iliopsoas tenting and trapping of the liner compared to conventional designs. We created a finite element study based on previous cadaver testing to further analyze the effectiveness of the ACDM design in reducing soft-tissue impingement, specifically the tendon-liner contact pressure and the tendon stress.

Methods

The finite element model was developed within COMSOL 4.3b. The psoas tendon was modelled as a Yeoh hyper-elastic Material, which uses 3 constants (c1-c3), density (1.73g/cm3) and a bulk modulus (26GPa)[Hirokawa,2000]. In a previous, separate study, the average stiffness of 10 psoas tendon samples (5 cadavers), were measured to be 339[N/mm] in the linear region with average width and thickness of 14mmX4mm. The 3 constants were tuned to match experimental uniaxial test data, and were 5[GPa], 0[Gpa], and 46[GPa] for c1, c2, and c3 respectively.

The implant components were rigidly modeled relative to the psoas. Cadaver specific CT models were used to create the FEA geometry. The insertion points for the Psoas were digitally determined on the proximal end of the lesser trochanter, and the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. These insertion points determined the length of the psoas and its relative position to the femoral head in 3D. The specific liner size and position for each cadaver was determined by implant planning with the CT models. In this abstract, we only present data for 2 specimens (left/right hips) with 44mm conventional DM, and 44mm ACDM, matching specimen anatomy. A 500N tensile load was applied to the psoas tendon proximally to simulate moderate physiological loading, the average/max stresses and contact pressures between the psoas and the two liner designs were determined.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 155 - 155
1 May 2016
Zumbrunn T Malchau H Rubash H Muratoglu O Varadarajan K
Full Access

INTRODUCTION

In native knees the anterior cruciate ligament (ACL) plays a major role in joint stability and kinematics. Sacrificing the ACL in contemporary total knee arthroplasty (TKA) is known to cause abnormal knee motion, and reduced function. Hence, there is growing interest in the development of ACL retaining TKA implants. Accommodation of ACL insertion around the tibial eminence is a challenge with these designs. Therefore, a reproducible and practical test setup is necessary to characterize the strength of the ACL/bone construct in ACL retaining implants. Seminal work showed importance of loading the ACL along its anatomical orientation. However, prior setups designed for this purpose are complex and difficult to incorporate into a standardized test for wide adoption. The goal of this study was to develop a standardized and anatomically relevant test setup for repeatable strength assessment of ACL construct using basic force-displacement testing equipment.

METHODS

Cadaver knees were positioned with the ACL oriented along the loading axis and being the only connection between femur and tibia. 15° knee flexion was selected based on highest ACL tensions reported in literature. Therefore, the fixtures were adjusted accordingly to retain 15° knee flexion when the ACL was tensioned. The test protocol included 10 cycles of preconditioning between 6N and 60N at 1mm/s, followed by continuous distraction at 1mm/s until failure (Fig. 1). Eleven cadaveric knees (4 male, 7 female; 70.9 yrs +/−13.9 yrs) were tested using this setup to characterize a baseline ACL pullout strength (peak load to failure) in native knees.