Previous studies showed that a fast-resorbable antibacterial hydrogel coating (DAC®, Novagenit Srl, Mezzolombardo, TN, Italy) composed of covalently linked hyaluronan and poly-D, L-lactide, is able to reduce early post-surgical infection both after joint replacement and osteosynthesis. Aim of the present report is to investigate medium-term safety and efficacy of the coating in patients undergoing primary and revision cementless total hip replacement (THR). We designed a two-phases study. In both phases, DAC was prepared according to manufacturer's instructions. In brief, the syringe prefilled with 300 mg of sterile DAC powder was mixed, at the time of surgery, with a solution of 5 mL of sterile water and with the tailored antibiotics, at a concentration ranging from 25 mg/mL to 50 mg/mL. The resulting antibacterial hydrogel was then spread on the outer surface of the prosthesis just before implantation. In the first phase, safety was assessed. Forty-six patients (13 primary and 33 revision THR) were treated with DAC between 2013 and 2015 and evaluated at a 2.8 ± 0.7 years follow up (FU). Antibiotics used for DAC reconstruction were Vancomycin in 33 cases, Vancomycin + Meropenem in 10, Vancomycin + Rifampicin, Teicoplanin or Ceftazidime in 1 case, respectively. Patients were evaluated at 3, 6, 12 months and yearly after with a clinical and radiographic FU. No evidence of infection and no failure/loosening of the prosthesis were observed. No adverse events were reported. The second phase was designed to evaluate efficacy of DAC in preventing infection recurrences after a two stage revision for infected THR. Twenty-seven patients, treated with DAC coating, were compared with a control group of 32, treated in the same time period, without the coating. Demographics, host type and and identified bacteria were similar in the two groups (18.6% of MRSA in DAC group vs 18.5% MRSA in no-DAC group). Patients were evaluated clinically and radiographically at 3, 6, 12 months and yearly thereafter. At a minimum 2 years FU (mean 2.7), we observed 1 dislocation in each group and 2 cases of loosening in the no-DAC group. 4 cases (11%) of recurrence of infection in the no-DAC group (1 MRSA and 3 St. Epidermidis) and no infection recurrences in the DAC group. Due to the small cohort of patients this difference is not statistically significant (Fisher's exact test, p=0.18). This is, to our knowledge, the longest observation concerning the safety and efficacy of the DAC antibacterial coating, applied to hip replacement. The results are in line with those previously reported and point out the absence of side effects of the antibacterial coating in this application and the tendency to reduce re-infection in second stage. This finding needs to be confirmed by a larger dataset.
The treatment of osteomyelitis often requires extensive surgical debridement and removal of all infected tissues and foreign bodies. Resulting bone loss can then eventually be managed with antibacterial bone substitutes, that may also serve as a regenerative scaffold. Aim of the present study is to report the clinical results of a continuous series of patients, treated at our centre with an antibacterial bioglass*. From November 2010 to May 2016, a total of 106 patients, affected by osteomyelitis, were included in this prospective, single centre, observational study. Inclusion criteria were the presence of osteomyelitis with a contained bone defect or segmental defects < 10 mm, with adequate soft tissue coverage. All patients underwent a one-stage procedure, including surgical debridement and bone void filling with the bioactive glass*, with systemic antibiotic therapy and no local antibiotics. Clinical, radiographic and laboratory examinations were performed at 3, 6 and 12 months and yearly thereafter.Aim
Method
Development of antibacterial surfaces or coatings to prevent bacterial adhesion and hence colonization of implants and biofilm formation is an attractive option, in order to reduce the tremendous impact of implant-related infections associated with modern surgery. To overcome the lack of Sterile sandblasted titanium discs of approximately 5cm2 surface area were used as substrates for bacterial adhesion. The gel was prepared as follows: syringes prefilled with 300 mg of DAC powder (Novagenit Srl) were reconstituted with 5 ml of sterile water to obtain a hydrogel with a DAC concentration of 6%. Two experiments were conducted. In the first, 200 mg of hydrogel were homogenously spread on the surface of titanium disc, with the spreading device provided by the manufacturer. Both coated and uncoated substrates (controls) were overlaid with a standardized inoculum (108 CFU/ml) of a wild methicillin-resistant The adhesion density of Our results shows that DAC, “Defensive Antibacterial Coating”, has anti-adhesive properties that allow to reduce bacterial adhesion on a sanded titanium surface by more than 80%, even in the presence of remarkably high bacterial loads (108 CFU/ml), of multi-resistant bacteria (MRSA) and even in the case of previous contamination. Providing anti-adhesive properties to a surface with a fast-resorbable coating may be a safe option to protect inorganic and organic surfaces and biomaterials. Those observation could be the pre-requisite for its
The treatment of chronic osteomyelitis often
includes surgical debridement and filling the resultant void with antibiotic-loaded
polymethylmethacrylate cement, bone grafts or bone substitutes.
Recently, the use of bioactive glass to treat bone defects in infections
has been reported in a limited series of patients. However, no direct comparison
between this biomaterial and antibiotic-loaded bone substitute has
been performed. In this retrospective study, we compared the safety and efficacy
of surgical debridement and local application of the bioactive glass
S53P4 in a series of 27 patients affected by chronic osteomyelitis
of the long bones (Group A) with two other series, treated respectively
with an antibiotic-loaded hydroxyapatite and calcium sulphate compound
(Group B; n = 27) or a mixture of tricalcium phosphate and an antibiotic-loaded
demineralised bone matrix (Group C; n = 22). Systemic antibiotics
were also used in all groups. After comparable periods of follow-up, the control of infection
was similar in the three groups. In particular, 25 out of 27 (92.6%)
patients of Group A, 24 out of 27 (88.9%) in Group B and 19 out
of 22 (86.3%) in Group C showed no infection recurrence at means
of 21.8 (12 to 36), 22.1 (12 to 36) and 21.5 (12 to 36) months follow-up,
respectively, while Group A showed a reduced wound complication
rate. Our results show that patients treated with a bioactive glass
without local antibiotics achieved similar eradication of infection
and less drainage than those treated with two different antibiotic-loaded
calcium-based bone substitutes. Cite this article:
Bone loss, either due to a septic process or to surgical débridements, is frequently associated with bone infections. Bone loss may be present in septic non-unions, osteomyelitis or septic joint prosthesis. In each of these conditions the use of bone or bone substitutes may be indicated. However, the risk of septic recurrence makes the choice of the right implant in these patients particularly difficult. Clinical cases are presented to show the different choices available. Attention is focussed on: (1) when, in the presence of bone loss, a bone graft can be avoided and with which suitable procedures good results can be obtained; (2) when and how autologous bone grafts should be used; (3) when homologous bone grafts or bone substitutes are indicated; (4) how bone grafts should be protected against bacterial adesion and proliferation; and (5) the role of new technologies, such as bone growth factors. In this regard the clinical results are presented of the use of platelet-rich plasma (PRP) added to autologous or homologous bone after bone débridement in six patients treated with two-stage non-cemented revision of septic hip prosthesis and in two patients with septic non-union of the femur. At a minimum follow-up of 6 months (max. 1 year), we did not observe any infection recurrence, while bone remodelling and clinical outcome were favourable. The use of bone growth factors such as PRP possibly added to autologous or homologous bone appears to be a promising technique to achieve bone reconstruction in débrided bone infections. However, with the limited numbers of patients and the short-term follow-up conclusions cannot be drawn and the use of growth factors with this indication should be limited to selected cases: patients with wide bone loss and with no signs of active infections. No international guidelines are available concerning bone reconstruction in infections. Clinical experience shows that different surgical procedures are effective and the choice should take into considerations the type and site of bone defect, the host type and the pathogenesis of the bone loss. Growth factors may be a useful tool in these conditions and further studies are indicated.
A modular neck allows to choose the offset of the femoral head and the degree of anti-retroversion, lateralization and varus-valgus intraoperatively. At the G. Pini Institute we have been using modular necks in custom prostheses since 1989. Excellent results in this application did open the way to a larger use in off-the-shelf prostheses. Modular necks can be now coupled with different stems, leaving the surgeon free to use the preferred prosthetic stem design. Modular necks have been implanted in more than 50,000 in the world. Medium term results in custom prosthesis and the experience in off-the-shelf non-cemented stems are presented, together with further improvements of this technology under study. From 1989 to December 1999, 481 custom stems have been implanted. All patients but ten received modular necks. The prostheses were made of a titanium alloy and HA coated. 61 % of patients had dysplastic oxarthrosis. 372 implants performed between 1989 and 1996 were retrospectively evaluated. Data from off-the-shelf prosthesis, at a shorter follow-up, are also reported. Laboratory data showed that the use of an elliptical Morse cone of the neck reduced wear debris production to less than 1 mg/year. In custom implants, (mean follow-up: 7 years), we did not observe any thigh pain or radiological signs of osteolysis or fretting. Mean leg-length discrepancy was 2.8 cm pre-op and 0.3 cm post-operatively. Off-the-shelf implants also showed good clinical and radiological results. New design modular necks will increase the possible range of motion and provide more solutions for positioning the center of rotation. Modular neck is a safe and reliable solution to obtain the correct position of the center of rotation intra-operatively, without side effects. Applications in off-the-shelf prostheses allow to reduce costs while maintaining the advantages of this technology.