Mesenchymal stem cells (MSC) are attractive candidates for bone regeneration approaches. Benefits of MSC therapy are mainly attributed to paracrine effects via soluble factors, exerting both immunoregulatory and regenerative actions. Encapsulation of MSC in hydrogels prepared with extracellular matrix (ECM) proteins has been proposed as a strategy to enhance their survival and potentiate their function after implantation. Functional activity of MSC can be regulated by the physical and mechanical properties of their microenvironment. In this work, we investigated whether matrix stiffness can modulate the crosstalk between MSC encapsulated in collagen hydrogels with macrophages and osteoblasts. Collagen hydrogels with a final collagen concentration of 1.5, 3 and 6 mg/mL loaded with human MSC were prepared. Viscoelastic properties of hydrogels were measured in a controlled stress rheometer. Cell distribution into the hydrogels was examined using confocal microscopy and the levels of the immunomodulatory factors interleukin-6 (IL-6) and prostaglandin E2 (PGE2) released by MSC were quantified by immunoassays. To determine the effect of matrix stiffness on the immunomodulatory potential of MSC, human macrophages obtained from healthy blood were cultured in media conditioned by MSC in hydrogels. The involvement of IL-6 and PGE2 in MSC-mediated immunomodulation was investigated employing neutralizing antibodies. Finally, the influence of soluble factors released by MSC in hydrogels on bone-forming cells was studied using osteoblasts obtained from trabecular bone explants from patients with osteonecrosis of the femoral head during total hip arthroplasty.Introduction and Objective
Materials and Method