Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Prior to the implantation procedure, Aim
Method
In trauma surgery, the development of biomaterial-associated infections (BAI) is one of the most common complications affecting trauma patients, requiring prolonged hospitalization and the intensive use of antibiotics. Following the attachment of bacteria on the surface of the biomaterial, the biofilm-forming bacteria could initiate a chronic implant-related infection. Despite the use of conventional local and systemic antibiotic therapies, persistent biofilms involve various resistance mechanisms that contribute to therapeutic failures. The development of In the first model, biofilms were formed following an incubation period (up to 7 days) in the CDC Biofilm Reactor (CBR, BioSurface Technologies). Then, after implantation of the pre-incubated K-wire in the larvae, rifampicin (80 mg/kg) was injected and the survival of the larvae was monitored. In the second model, biofilm formation was achieved after an incubation period (up to 7 days) inside the larvae and then, after removing the K-wires from the host, Aim
Method
The origin of surgical site and biomaterial-associated infection is still elusive. Microorganisms contaminating the wound may come from the air, the surgical team, or from the skin of the patient. Prior to surgery the skin of patients is disinfected, but bacteria deeper in the skin ( To study if cutaneous microbiota colonize the wound when released from the skin upon cutting, we isolated, quantified and identified aerobic and anaerobic bacteria from the skin of 99 patients undergoing trauma surgery, before and after skin disinfection, from the knife blades and from the wound directly after the first cut.Aim
Method
The use of medical devices has grown significantly over the last decades, and has become a major part of modern medicine and our daily life. Infection of implanted medical devices (biomaterials), like titanium orthopaedic implants, can have disastrous consequences, including removal of the device. For still not well understood reasons, the presence of a foreign body strongly increases susceptibility to infection. These so-called biomaterial-associated infections (BAI) are mainly caused by Medical grade titanium implants (10×4×1 mm) were dip-coated in a solution of 10% (Aim
Method