Implant loosening remains a common cause of total ankle replacement (TAR) revision, and has been associated with wear-mediated osteolysis. Limited pre-clinical studies for TARs have been reported and the variety of experiment settings make it difficult to compare wear rates. Factors such as simulator control mechanism; whether pneumatic or electromechanical, may influence the integrity of the simulator outputs with respect to input profiles. This study compares the wear of a TAR, tested in electromechanical and pneumatic experimental simulators under identical input conditions. Twelve medium BOX® (MatOrtho Ltd) TARs (n=6 for each simulator) were tested in an electromechanical and pneumatic knee simulator (Simulation Solutions, UK) for 3 million cycles (Mc). Standard ‘Leeds’ displacement-controlled inputs were used. Kinematic performance was investigated by comparing the output profiles against the maximum demanded input values. The lubricant used was 25% new-born calf serum and wear was determined gravimetrically.Abstract
Objectives
Methods
Total ankle replacement (TAR) is a substitute to ankle fusion, replacing the degenerated joint with a mechanical motion-conserving alternative. Compared with hip and knee replacements, TARs remain to be implanted in much smaller numbers, due to the surgical complexity and low mid-to-long term survival rates. TAR manufacturers have recently explored the use of varying implant sizes to improve TAR performance. This would allow surgeons a wider scope for implanting devices for varying patient demographics. Minimal pre-clinical testing has been demonstrated to date, while existing wear simulation standards lack definition. Clinical failure of TARs and limited research into wear testing defined a need for further investigation into the wear performance of TARs to understand the effects of the kinematics on varying implant sizes. Six medium and six extra small BOX® (MatOrtho) TARs will be tested in a modified knee simulator for 5 million cycles (Mc). The combinations of simulator inputs that mimic natural gait conditions were extracted from ankle kinematic profiles defined in previous literature. The peak axial load will be 3.15 kN, which is equivalent to 4.5 times body weight of a 70kg individual. The flexion profile ranges from 15° plantarflexion to 15° dorsiflexion. Rotation about the tibial component will range from −2.3° of internal rotation to 8° external rotation, while the anterior/posterior displacement will be 7mm anterior to −2mm posterior throughout the gait cycle. The components will be rotated through the simulation stations every Mc to account for inter-station variability. Gravimetric measurements of polyethylene wear will be taken at every Mc stage. A contact profilometer will also be used to measure average surface roughness of each articulating surface pre-and-post simulation. The development of such methods will be crucial in the ongoing improvement of TARs, and in enhancing clinical functionality, through understanding the envelope of TAR performance.
Nanometre-sized particles of ultra-high molecular weight polyethylene have been identified in the lubricants retrieved from hip simulators. Tissue samples were taken from seven failed Charnley total hip replacements, digested using strong alkali and analysed using high-resolution field emission gun-scanning electron microscopy to determine whether nanometre-sized particles of polyethylene debris were generated We isolated nanometre-sized particles from the retrieved tissue samples. The smallest identified was 30 nm and the majority were in the 0.1 μm to 0.99 μm size range. Particles in the 1.0 μm to 9.99 μm size range represented the highest proportion of the wear volume of the tissue samples, with 35% to 98% of the total wear volume comprised of particles of this size. The number of nanometre-sized particles isolated from the tissues accounted for only a small proportion of the total wear volume. Further work is required to assess the biological response to nanometre-sized polyethylene particles.