Proper femoral reaming is a key factor for a successful outcome in cementless hip arthroplasty. Good quality reaming minimizes risks of intra-operative femoral fracture during reaming and prevents poor fitting of the implant which can lead to subsidance of the stem postoperativly. Determining the quality of reaming is largely a subjective skill and dependant on the surgeon's experience with no documented intraoprative method to assess it objectively. We recorded and analysed the frequencies of sound signals recorded via a bone conduction microphone during reaming of the femoral canal in a series of 28 consecutive patients undergoing uncemented total hip replacement performed by same surgeon. Hammaring sound frequencies and intensity were analysed by mean of computer software. The relationship between the patterns of the recorded reaming sound frequencies compared with surgeon judgment of the reaming quality intraoparativly and post operative x rays. All patients were followed up clinically and radiologically for 2 years after surgery to determine the integrity of the fix and to evaluate the stability of the prosthesis.Introduction
Method
Compression foot pumps are widely used for the prevention of postoperative venous thrombosis. We tested the efficiency of the pump in ten healthy subjects; the velocity of venous blood flow in the common femoral vein was measured in the horizontal, Trendelenberg (foot-up) and reverse-Trendelenberg (foot-down) positions. Application of the foot pump produced an increase in the venous velocity in all subjects. The mean increase in the horizontal position was 27.2% and in the Trendelenberg position 15.4%. In the reverse-Trendelenberg position, the foot pump produced a mean increase of 102.8%. The efficiency of the compression foot pump in increasing venous return is improved by adopting the reverse-Trendelenberg position. This may increase its thromboprophylactic effect.