Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_7 | Pages 2 - 2
1 May 2018
Sinnett T Sabharwal S Sinha I Griffiths D Reilly P
Full Access

We present a case series of patients who underwent 3 or 4 part proximal humerus fracture fixation using an intra-osseous suture technique. 18 patients are included in the study with follow up data obtained ranging from 1 to 4 years. Oxford Shoulder Scores (OSS) and range of movement measurements were taken for all patients.

The mean OSS for the group was 50/60 with a mean forward flexion of 140°, abduction of 132°, external rotation of 48° and internal rotation to the level 10th thoracic vertebra. Three patients developed adhesive capsulitis, 2 requiring subsequent arthroscopic release. This data compares favourably to outcomes reported in the literature with hemiarthroplasty or locking plate fixation.

An activity based costing analysis estimated that the treatment costs for proximal humerus fractures was approximately £2,055 when performing a soft tissue reconstruction, £3,114 when using a locking plate and £4,679 when performing a hemiarthroplasty. This demonstrates a significant financial saving when using intra-osseous fixation compared to other fixation techniques.

We advocate the use of the intra-osseous suture fixation technique for certain 3 and 4 part fractures. It gives good functional outcomes, significant cost savings and potentially makes revision procedures easier when compared to other fixation techniques.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 54 - 54
1 Feb 2016
Darwood A Emery R Reilly P Richards R Baena FRY Tambe A
Full Access

Introduction

Optimal orthopaedic implant placement is a major contributing factor to the long term success of all common joint arthroplasty procedures. Devices such as 3D printed bespoke guides and orthopaedic robots are extensively described in the literature and have been shown to enhance prosthesis placement accuracy. These technologies have significant drawbacks such as logistical and temporal inefficiency, high cost, cumbersome nature and difficult theatre integration. A radically new disruptive technology for the rapid intraoperative production of patient specific instrumentation that obviates all disadvantages of current technologies is presented.

Methods

An ex-vivo validation and accuracy study was carried out using the example of placing the glenoid component in a shoulder arthroplasty procedure.

The technology comprises a re-usable table side machine, bespoke software and a disposable element comprising a region of standard geometry and a body of mouldable material.

Anatomical data from 10 human scapulae CT scans was collected and in each case the optimal glenoid guidewire position was digitally planned and recorded.

The glenoids were isolated and concurrently 3D printed. In our control group, guide wires were manually inserted into 1 of each pair of unique glenoid models according to a surgeon's interpretation of the optimal position from the anatomy. The same surgeon used the guidance system and associated method to insert a guide wire into the second glenoid model of the pair.

Achieved accuracy compared to the pre-operative bespoke plan was measured in all glenoids in both the conventional group and the guided group.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 217 - 217
1 Sep 2012
Majed A Krekel P Charles B Neilssen R Reilly P Bull A Emery R
Full Access

Introduction

The reliability of currently available proximal humeral fracture classi?cation systems has been shown to be poor, giving rise to the question whether a more objective measure entails improved predictability of surgical outcome. This study aims to apply a novel software system to predict the functional range of motion of the glenohumeral joint after proximal humeral fracture.

Method

Using a validated system that simulates bone-determined range of motion of spheroidal joints such as the shoulder joint, we categorically analysed a consecutive series of 79 proximal humeral fractures. Morphological properties of the proximal humerus fractures were related to simulated bone-determined range of motion.