Closed reduction and percutaneous pinning has become the most common technique for the treatment of Type III displaced supracondylar humerus fractures in children. The purpose of this study was to evaluate whether the loss of reduction in lateral K wiring is non-inferior to crossed K wiring in this procedure. A prospective randomised non-inferiority trial was conducted. Patients aged three to seven presenting to the Emergency Department with a diagnosis of Type III supracondylar humerus fracture were eligible for inclusion in the study. Consenting patients were block randomised into one of two groups based on wire configuration (lateral or crossed K wires). Surgical technique and post-operative management were standardised between the two groups. The primary outcome was loss of reduction, measured by the change in Baumann's angle immediately post –operation compared to that at the time of K wire removal at three weeks. Secondary outcome data collected included Flynn's elbow score, the humero-capitellar angle, and evidence of iatrogenic ulnar nerve injury. Data was analysed using a t-test for independent means. A total of 52 patients were enrolled at baseline with 23 allocated to the lateral pinning group (44%) and 29 to the cross pinning group (56%). Six patients (5 crossed, 1 lateral) received a third wire and one patient (crossed) did not return for x-rays at pin removal and were therefore excluded from analysis. A total of 45 patients were subsequently analysed (22 lateral and 23 crossed). The mean change in Baumann's angle was 1.05 degrees, 95% CI [-0.29, 2.38] for the lateral group and 0.13 degrees, 95% CI [-1.30, 1.56] for the crossed group. There was no significant difference between the groups in change in Baumann's Angle at the time of pin removal (p = 0.18). Two patients in the crossed group developed post-operative iatrogenic ulnar nerve injuries, while none were reported in the lateral group. Preliminary analysis shows that loss of reduction in Baumann's angle with lateral K wires is not inferior to crossed K wires in the management of Type III supracondylar humerus fractures in children. The results of this study suggest that orthopaedic surgeons who currently use crossed K wires could consider switching to lateral K wires in order to reduce the risk of iatrogenic ulnar nerve injuries without significantly compromising reduction.
Most long-term follow-up studies report retrospective data, the quality of which remains limited due to their inherent biases. Prospective databases may overcome these limitations, however, feasibility and costs limit their application. To date there exists a paucity of evidence-based literature on which recommendations can be made for the ideal length of follow-up for spinal deformity research. Therefore, our aim was to evaluate the added value of follow-up of patients beyond 2 years following surgery for AIS. A database registry evaluating surgical outcomes for all consecutive AIS patients with post-op data-points of 6 months, 1 year, 2 year, and 5 year was analysed. Surgeon-reported complications, SRS-22 scores, and radiographic data were evaluated. Complications requiring surgical or medical intervention were compared between patients in whom complications developed within 2 years to those in which newly developed complications occurred between >2–5 years. 536 patients were analysed. SRS-22 scores significantly improved at 2 years post-op with no change at 5-year follow-up. Overall complication rate was 33.2% with majority occurring within 2 years (24.8%). The rate of complications occurring >2–5 years requiring intervention was significantly lower than those requiring intervention within 2 years of surgery (4.7% vs 9.7%, p=0.000), however was not negligible. The most common newly observed complication beyond 2 years was pain (1.9%), followed by surgical site infection (SSI) (1.3%) and implant issues (0.56%). There were no significant differences in the rates of crankshaft (p=0.48), implant issues (p=0.56), pseudarthrosis (p=0.19), and SSI (p=0.13) between the 2 time points. Although majority of complications following AIS surgery occurs within 2 years, a non-negligible rate of newly observed complications occur at >2–5 years post-op. Specifically crankshaft, pseudarthrosis, implant issues, and SSI have similar rates of occurrence at these 2 time points.
A commonly misunderstood principle in medical literature is statistical significance. Often, statistically non-significant or negative results are thought to be evidence for equivalence; mistakenly validating treatment modalities and putting patients at risk. This study examines the prevalence of misinterpretation of negative results of superiority trials in orthopaedic literature and outlines the need for a non-inferiority or equivalence research design. Four orthopaedic journals – Journal of Paediatric Orthopaedics A, Journal of Bone and Joint Surgery American Volume, Journal of Arthroplasty and Journal of Shoulder and Elbow Surgery – were hand searched to identify all randomised control trials (RCTs) published within the time periods 2002–2003, 2007–2008 and 2012–2013. The identified RCTs were read and classified by study methodology, results obtained, and interpretation of results. A total of 237 RCTs were identified. When analysing the primary outcomes, 117 (49.4%) studies yielded negative results and 120 (50.8%) yielded positive results. Out of the 237 articles, 231 (97.5%) used superiority methodology and 6 (2.5%) used non-inferiority or equivalence methodology. Of the 231 studies that used superiority methodology, 115 (49.8%) obtained negative results; and 45 (39.1%) of those misinterpreted the negative results for equivalence. While no statistical differences were seen, there was an upward trend in utilising non-inferiority and equivalence methodologies over time. Given the frequency of misinterpreted negative results, there is an evident need for a more appropriate research methodology that shows equivalence of treatment methods. A non-inferiority or equivalence study design can address orthopaedic clinical dilemmas more suitably when trying to show one treatment is no worse or is equal to another treatment. Regarding orthopaedic treatment modalities as equivalent when studies show negative statistical results can be detrimental to patients and their clinical outcomes. A non-inferiority methodology can be used to accurately depict no difference between treatment methods rather than attempting to show one treatment method as superior.
Natural history of AIS >30° in skeletally mature patients is poorly defined. Studies reporting rates and risk factors for progression are predominantly of large curves in immature patients. Our aim was to determine the rate of curve progression in AIS following skeletal maturity, any associated changes in SRS-22 scores, and identify any potential predictors of curve progression. Patients enrolled in a prospective, longitudinal, multicentre non-surgical AIS database were evaluated. All patients had minimum 2 year follow-up, idiopathic scoliosis >30°, and were skeletally mature. SRS-22 functional outcome scores and radiographic data were compared at baseline and 2-year follow-up. Patients were divided into 3 groups based on curve size: A=30°-39°, B=40°-49°, C= >50°. Curve progression was defined as any change in curve magnitude. There were 80 patients, majority females (93.8%) with a mean age of 16.5+/−0.16. Mean BMI was 21+/−0.31 with 15.1% overweight. Mean major cobb at baseline was 38.3°+/−0.88°. At 2 year follow-up 46.3% of curves had progressed an average 3.4°+/−0.38°. Of curves that progressed, patients in group A had the largest mean rate of progression followed by group B. SRS-22 scores on average declined significantly over 2 years in this cohort (4.23 to 4.08; p=0.002). Patients who progressed had on average a more significant decline in SRS outcome scores compared to those that did not (p=0.018, p=0.041 respectively), with the most significant change noted in the Self-Image domain (p=0.03). There was no significant difference in the change in SRS scores over 2 years based on curve size. Univariate analysis did not identify any factors predictive of curve progression in this cohort. Skeletally mature patients with AIS >30°may continue to have a risk of progression at a mean rate of 1.7°/yr and significant decline in SRS-22 outcome scores, in particular Pain and Self-Image, over time.
This pilot study aims to investigate the utility and feasibility of a unique upright MR scan for imaging hips affected by Legg-Calve-Perthes Disease (LCPD) with patient standing up, in comparison to the standard supine scans. Protocol development using this unique upright MRI included healthy adult and child volunteers. Optimum patient positioning in a comparable way between supine to standing was assessed. The balance between shorter scan time (to what a child can tolerate) and longer scan time (for better image acquisition). The study protocol has begun in 2 children with LCPD. Patient recruitment continues. Early results indicate a dynamic deformity of the femoral head in early stage LCP disease. Femoral epiphysis height decreased on standing (7.8 to 6.8mm), width increased on standing (16.6 to 20.9mm) and lateral extrusion increased (3.5 to 4.1mm). Overall epiphyseal shape changed from trapezoidal (LCP femoral head when supine) to flattened triangular (LCP femoral head when standing). Differences were thus demonstrated in all parameters of bony epiphyseal height, width, extrusion and shape of a femoral head with LCP Disease when the child stood and loaded the affected hip. Satisfactory image acquisition was possible with Coronal T1 GFE sequences, with both hips in the Field of View. 2.5min scans were performed with the child standing first, then supine. Hip position was comparable when standing and supine. Longer scans were not tolerated by younger children, more so those with LCP disease. To our knowledge this is the first reported use of standing MRI in LCPD. A dynamic deformity has been demonstrated, with flattening, widening and worsened lateral extrusion when the child is standing compared to supine. This proof of concept investigation demonstrates the feasibility of upright MRI scanning and may demonstrate previously undetected deformity.
This study examined clinical and radiological outcomes following video assisted thoracoscopic surgery (VATS) for anterior release and fusion in the correction of paediatric scoliotic deformities. Nineteen patients who underwent VATS were compared with nineteen open thoracotomy patients to compare degree of correction and perioperative morbidity. Demographic parameters were similar between the groups and there was no significant difference in operative time or total blood loss. VATS offered the same degree of correction as open thoracotomies and has the potential to decrease post-operative morbidity while still allowing the same degree of correction as traditional open thoracotomies. To compare the peri-operative parameters and outcomes of video-assisted thoracoscopic surgery (VATS) with open thoracotomy for anterior release and fusion in the treatment of paediatric spinal deformities. VATS is a good alternative to open thoracotomy. VATS has the potential to decrease post-operative morbidity while still allowing the same degree of correction as traditional open thoracotomies. There were nineteen patients in each group, seventeen with idiopathic scoliosis in the VATS group and sixteen in the open group. Mean age, weight at surgery and pre-operative Cobb angle were similar (p=1.000, 0.8277, 0.0636, respectively). There was no significant difference in operative time per level between the VATS group and the open group (37.2 vs. 34.5 min, p= 0.2254) or total blood loss (908 vs. 823 ml, p= 0.4953). There were no major complications encountered in the VATS group, one patient in the open group experienced atelectasis and subsequent lower lobe collapse. A detailed chart and radiographic review was undertaken to determine degree of correction, perioperative morbidity and complications, if any, of patients who underwent VATS between 1997 and 2004 at the author’s institution. A control group of patients who underwent open thoracotomy was used to determine if is there a significant difference in correction (Cobb angle) or in perioperative morbidity when using VATS versus open thoracotomy for anterior release and fusion in the correction of scoliotic deformities. It appears that VATS offers the same degree of correction as open thoracotomies.
Screw placement was unacceptable in one case. Post-operative Halo immobilisation was used in seven patients. Post-operative complications included one wound infection and four halo pin infections requiring treatment. No patients have required surgery at a mean follow-up of four years. C1-C2 facet screws are an important adjunct in a paediatric spine practice. This technique has a great advantage in Down syndrome patients who have a high rate of pseudoarthosis because of: ligamentous laxity, non-compliance with immobilisation and a high incidence of congenital deformities such as os odontoidium and incomplete posterior arch of C1.
Anterior instrumentation has been completed in five patients at the author’s institution. Obliquity of L3 was corrected from a mean of 29 degrees pre-operatively to five degrees post-operatively. No patients had significant decompensation nor did they require any further procedure. No post-operative complications occurred. The technique allows for one incision instrumentation of double major curves to the lower end vertebra, preserving the L3-4 motion segment.