Use of a novel ligament gap balancing instrumentation system in total knee arthroplasty (TKA) resulted in femoral component external rotation values which were higher on average, compared to measured bone resection systems. In one hundred twenty knees in 110 patients the external rotation averaged 6.9 degrees (± 2.8) and ranged from 0.6 to 12.8 degrees. The external rotation values in this study were 4° and 2° larger, respectively, than the typical 3° and 5° discrete values that are common to measured resection systems. The purpose of the present study was to determine the effect of these greater external rotation values for the femoral component on patellar tracking, flexion stability and function of two different TKA implant designs. In the first arm of the study, 120 knees in 110 patients were consecutively enrolled by a single surgeon using the same implant design (single radius femur with a medial constraint tibial liner) across subjects. All patients underwent arthroplasty with tibial resection first and that set external rotation of the femoral component based upon use of a ligament gap balancing system. Following ligament tensioning / balancing, the femur was prepared. The accuracy of the ligament balancing system was assessed by reapplying equal tension to the ligaments using a tensioning bolt and torque wrench in flexion and extension after the bone resections had been made. The resulting flexion and extension gaps were then measured to determine rectangular shape and equality of the gaps. Postoperative Merchant views were obtained on all of the patients and patellar tracking was assessed and compared to 120 consecutive total knee arthroplasties previously performed by the same surgeon with the same implant using a measured resection system. In the second arm of the study, 100 unilateral knees in 100 patients were consecutively enrolled. The same instrumentation and technique by the same surgeon was used, but with a different implant design (single radius femur without a medial constraint tibial liner).INTRODUCTION
METHODS
Use of a novel ligament gap balancing instrumentation system in total knee arthroplasty resulted in femoral component external rotation values which were higher on average, compared to measured resection systems. In one hundred twenty knees in 110 patients the external rotation averaged 6.9 degrees (+/− 2.8) and ranged from 0.6 to 12.8 degrees. The external rotation values in this study were 4° and 2° larger, respectively, than the typical 3° and 5° discrete values that are common to measured resection systems. The purpose of the present study was to determine the effect of these greater external rotation values for the femoral component on patellar tracking and flexion instability. One hundred twenty knees in 110 patients were consecutively enrolled by a single surgeon using the same implant across subjects. All patients underwent arthroplasty with tibial resection first and that set external rotation of the femoral component based upon use of a ligament gap balancing system. Following ligament tensioning/balancing, the femur was prepared. The accuracy of the ligament balancing system was assessed by reapplying equal tension to the ligaments using a tensioning bolt and torque wrench in flexion and extension after the bone resections had been made. The resulting flexion and extension gaps were then measured to determine rectangular shape and equality of the gaps. Postoperative Merchant views were obtained on all of the patients and patellar tracking was assessed and compared to 120 consecutive total knee arthroplasties previously performed by the same surgeon with the same implant using a measured resection system.INTRODUCTION
METHODS