Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_21 | Pages 71 - 71
1 Dec 2016
Smallman T Shekitka K Mann K Race A
Full Access

This study documents the gross and histologic structure of the infrapatellar plica, and fat pad, and adds to an earlier report to the COA. The important new findings are that the femoral attachment of the plica is an enthesis, and that the plica itself is.

This study seeks to demonstrate that the structure of the fat pad (FP) and infrapatellar plica (IPP) is that of an enthesis organ.

Twelve fresh frozen cadaver knees, each with an IPP, were dissected and the gross anatomic features recorded. The IPP and FP were harvested for study. Representative histologic sections were prepared on tissue fixed in 10% neutral buffered formalin, embedded in paraffin, cut at 4 microns on a rotatory microtome. Staining techniques included hematoxylin and eosin, Masson's trichrome, elastic stain and S100. Appropriate decalcification of sections of the femoral insertion of the IPP was performed. All sections were examined by light microscopy at low, medium and high power. IPP types included 8 separate, 1 split, 2 fenestrated, and one vertical septum. The origin of the IPP is a fibrous arc arising from the apex of the notch separate from the margin of the articular cartilage. This attachment site is the instant centreof rotation of the IPP and FP; they are thus not isometric. The central zone of the IPP consists of a mix of connective tissue types.

Representative sections taken of the femoral attachment of the IPP display a transition zone between dense fibrillar collagen of the IPP, then fibrocartilage and cortical bone similar to a ligament attachment site or enthesis. The central plica histology is composed predominantly of dense regular connective tissue with variable clear space between the collagen bundles, and is thus ligamentous. There is abundant elastase staining throughout, as well as crimping of the collagen suggesting capacity for stretch. S100 staining demonstrates nerves around and in the substance of the IPP. The central body shows lobulated collections of mature adipose tissue admixed with loose connective tissue, containing abundant small peripheral nerves and vessels (all showing crimping and redundancy), merging with the dense fibrous tissue of the IPP. The FP is highly innervated, deformable, and fibro-fatty. Its histology shows lobules of fat, separated by connective tissue septa, which merge with the synovial areolar membrane surrounding the FP.

The linked structures, IPP, central body, and FP occupy the anterior compartment, and function as an enthesis organ: the IPP tethers the FP via the central body and together they rotate around the femoral origin of the IPP. They are not isometric, and must stretch and relax with knee motion. The histology correlates with this requirement. The origin of the IPP is an enthesis, a new observation. Elastase staining, redundancy of vessels and nerves, crimping and redundancy of the dense connective tissue all reflect the requirement to deform. The fat pad merges with the central body, both highly innervated space fillers, tethered by the IPP, which is a non-isometric ligament, also containing nerves. The important clinical significance of these structures is that release of the IPP at the origin reuces or eliminates anterior knee pain in most.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_15 | Pages 43 - 43
1 Mar 2013
Collopy D Wuestemann T Race A Nevelos J
Full Access

INTRODUCTION

Immediate post-operative stability of a cementless hip design is one of the key factors for osseointegration and therefore long-term success [1]. This study compared the initial stability of a novel, shortened, hip stem to a predicate standard tapered wedge stem design with good, long-term, clinical history. The novel stem is a shortened, flat tapered wedge stem design with a shape that was based on a bone morphology study of 556 CT scans to better fit a wide array of bone types [2].

METHODS

Test methods were based on a previous study [3]. Five stems of the standard tapered wedge design (Accolade, Stryker Orthopaedics, Mahwah, NJ) and the novel stem (Accolade II, Stryker Orthopaedics, Mahwah, NJ) were implanted into a homogenous set of 10 synthetic femora (Figure 1) utilizing large left fourth generation

composite femurs (Sawbones, Pacific Labs, Seattle, WA). The six degrees-of-freedom (6 DoF) motions of the implanted stems were recorded under short-cycle stair-climbing loads. Minimum head load was 0.15 kN and the maximum load varied between 3x Body Weights (BW) and 6 BW. Loading began with 100-cycles of “normal” 3 BW and was stepped up to 4 BW, 5 BW & 6 BW for 50-cycles each. Prior to each load increase, 50 cycles of 3 BW loading was applied. This strategy allowed a repeatable measure of cyclic stability after each higher load was applied.

The 6 DoF micromotion data, acquired during the repeated 3 BW loading segments, were reduced to four outcome measures: two stem migrations (retroversion and subsidence at minimum load) and two cyclic motions (cyclic retroversion and cyclic subsidence). Data were analyzed using repeated measures ANOVA with a single between-subjects factor (stem type) and repeated measures defined by load-step (3 BW, 4 BW, 5 BW 6 BW).


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 100 - 100
1 Sep 2012
Smallman TV Race A Ekroth S
Full Access

Purpose

Anterior knee pain has been relieved by resection of the infrapatellar plica (IPP). The question is: How? The hypothesis is: the IPP acts as an intra-articular ligament, a mechanical link between the forces of knee motion, the fat pad (FP) and the distal femur, holding the FP captive through the arc of motion. Release of the IPP severs this link, allowing the highly innervated FP to move freely. This may allow any underlying pathologic process to heal.

Method

Anatomic dissection: In 12 knees, the extensor apparatus was released from the femur and retracted distally allowing relationships to be examined.

Cadaver studies: Lateral fluoroscopy was used as well as direct arthroscopic visualization to control implantation of tantalum beads or radiographic contrast material in the FP and IPP. The knee was taken through the arc of motion repeatedly. The femoral attachment of the IPP was then released and knee motion repeated. Traction on the extensor apparatus simulated active motion.

In-Vivo Study: The IRB approved study of 12 volunteers undergoing planned knee arthroscopy under local anesthesia. Contrast was placed in the FP and IPP under lateral fluoroscopic control. Passive, then active motion then a quads-set manoeuvre was performed. The IPP was resected and knee motion again recorded.