Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXIX | Pages 212 - 212
1 Sep 2012
Tayton E Purcell M Briscoe A Kalra S Aarvold A Smith J Fahmy S Shakesheff K Howdle S Dunlop D Oreffo R
Full Access

Aims

Disease transmission, availability and economic costs of allograft have resulted in significant efforts into finding an allograft alternative for use in impaction bone grafting (IBG). Biotechnology offers the combination of skeletal stem cells (SSC) with biodegradable polymers as a potential solution. Recently polymers have been identified with both structural strength and SSC compatibility that offer the potential for clinical translation.

The aim of this study was to assess whether increasing the porosity of one such polymer via super critical CO2 fluid foaming (SCF) enhanced the mechanical and cellular compatibility characteristics for use as an osteogenic alternative to allograft in IBG.

Methods

High molecular weight PLA scaffolds were produced via traditional (solid block) and SCF (porous) techniques, and the differences characterised using scanning electron microscopy (SEM). The polymers were milled, impacted, and mechanical comparison between traditional vs SCD created scaffolds and allograft controls was made using a custom shear testing rig, as well as a novel agitation test to assess cohesion. Cellular compatibility tests for cell number, viability and osteogenic differentiation using WST-1 assays, fluorostaining and ALP assays were determined following 14 day culture with SSC's.